Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (03): 988-1005    DOI: 10.1016/j.jia.2023.10.010
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

Porcine enteric alphacoronavirus infection increases lipid droplet accumulation to facilitate the virus replication

Qi Gao1, 2, 3, Yongzhi Feng1, 3, Ting Gong1, 4, Dongdong Wu1, 4, Xiaoyu Zheng1, 3, Yizhuo Luo1, 2, Yunlong Yang1, 2, Zebu Song1, 4, Lang Gong1, 2, 4#, Guihong Zhang1, 4#

1 Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural       University, Guangzhou 510642, China

2 Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China

3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China 

4 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

冠状病毒具有广泛的宿主范围,可以在人和动物之间传播,并引起不同严重程度的疾病。猪肠道甲型冠状病毒(Porcine enteric alphacoronavirus, PEAV) 2017年首次在中国广东被报道它是近几年新发现的猪肠道致病性冠状病毒,可导致新生仔猪发生水样腹泻。由于对PEAV的宿主免疫应答、炎症反应和致病机制尚无深入研究的报道,因此急需对PEAV的感染与复制机制进行探究。本研究通过对PEAV感染宿主细胞的转录组学进行分析,发现PEAV可以上调宿主的脂质代谢途径。在脂质代谢、能量稳态等过程中,脂滴(lipid droplets, LD)是具有主要功能的细胞器,同时LD在病毒感染和炎症反应中具有重要作用。在本研究中,我们探究了LD的积聚对宿主炎症反应以及PEAV复制的影响。在受感染的细胞中发现,PEAV增加LD的积聚,并可以上调NF-κB信号通路、促进炎症因子IL-1β和IL-8的产生以及诱导细胞死亡。通过使用DGAT-1 inhibitor抑制LD的积聚可显著抑制PEAV的复制、下调NF-κB信号通路、减少促炎因子IL-1β和IL-8的产生以及抑制细胞死亡。同时研究发现,使用NF-κB信号通路抑制剂BAY11-7082可显著抑制LD的积聚与PEAV的复制。盐酸二甲双胍(metformin hydrochloride)药物同样具有抗PEAV的效力,其可显著抑制LD的积聚、下调NF-κB信号通路、减少促炎因子IL-1β和IL-8的产生以及抑制细胞死亡。总之,我们证明了脂质代谢途径中LD的积聚在 PEAV复制和发病机制中的重要作用,同时探究了metformin hydrochloride通过抑制LD的积聚和炎症应答发挥抗PEAV的作用和减少病理损伤,为PEAV的治疗策略开辟了新的思路。



Abstract  

Coronaviruses are widely transmissible between humans and animals, causing diseases of varying severity.  Porcine enteric alphacoronavirus (PEAV) is a newly-discovered pathogenic porcine enteric coronavirus in recent years, which causes watery diarrhea in newborn piglets.  The host inflammatory responses to PEAV and its metabolic regulation mechanisms remain unclear, and no antiviral studies have been reported.  Therefore, we investigated the pathogenic mechanism and antiviral drugs of PEAV.  The transcriptomic analysis of PEAV-infected host cells revealed that PEAV could upregulate lipid metabolism pathways.  In lipid metabolism, steady-state energy processes, which can be mediated by lipid droplets (LDs), are the main functions of organelles.  LDs are also important in viral infection and inflammation.  In infected cells, PEAV increased LD accumulation, upregulated NF-κB signaling, promoted the production of the inflammatory cytokines IL-1β and IL-8, and induced cell death.  Inhibiting LD accumulation with a DGAT-1 inhibitor significantly inhibited PEAV replication, downregulated the NF-κB signaling pathway, reduced the production of IL-1β and IL-8, and inhibited cell death.  The NF-κB signaling pathway inhibitor BAY11-7082 significantly inhibited LD accumulation and PEAV replication.  Metformin hydrochloride also exerted anti-PEAV effects and significantly inhibited LD accumulation, downregulated the NF-κB signaling pathway, reduced the production of IL-1β and IL-8, and inhibited cell death.  LD accumulation in the lipid metabolism pathway therefore plays an important role in the replication and pathogenesis of PEAV, and metformin hydrochloride inhibits LD accumulation and the inflammatory response to exert anti-PEAV activity and reducing pathological injury.  These findings contribute new targets for developing treatments for PEAV infections.

Keywords:  Porcine enteric alphacoronavirus        NF-κB inflammatory pathway        lipid droplet        metformin hydrochloride   
Received: 03 April 2023   Accepted: 29 August 2023
Fund: This research was funded by the National Natural Science Foundation of China (32102646), the Natural Science Foundation of Guangdong Province, China (2020A1515110315), the Start-up Research Project of Maoming Laboratory, China (2021TDQD002), and the China Agriculture Research System of MOF and MARA (cars-35).  
About author:  Qi Gao, E-mail: qigao2021@scau.edu.cn; #Correspondence Guihong Zhang, E-mail: guihongzh@scau.edu.cn; Lang Gong, E-mail: gonglang@scau.edu.cn

Cite this article: 

Qi Gao, Yongzhi Feng, Ting Gong, Dongdong Wu, Xiaoyu Zheng, Yizhuo Luo, Yunlong Yang, Zebu Song, Lang Gong, Guihong Zhang. 2024.

Porcine enteric alphacoronavirus infection increases lipid droplet accumulation to facilitate the virus replication . Journal of Integrative Agriculture, 23(03): 988-1005.

Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity, 9, 143–150.

Baek Y B, Kwon H J, Sharif M, Lim J, Lee I C, Ryu Y B, Lee J I, Kim J S, Lee Y S, Kim D H, Park S I, Kim D K, Kim J S, Choy H E, Lee S, Choi H S, Osborne T F, Jeon T I, Cho K O. 2022. Therapeutic strategy targeting host lipolysis limits infection by SARS-CoV-2 and influenza A virus. Signal Transduction and Targeted Therapy, 7, 367.

Beg A A, Baltimore D. 1996. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science, 274, 782–784.

Berardo C, Pasqua L G, Cagna M, Richelmi P, Vairetti M, Ferrigno A. 2020. Nonalcoholic fatty liver disease and non-alcoholic steatohepatitis: Current issues and future perspectives in preclinical and clinical research. International Journal of Molecular Sciences, 21, 9646.

Bohmwald K, Gálvez N M, Canedo-Marroquín G, Pizarro-Ortega M S, Andrade-Parra C, Gómez-Santander F, Kalergis A M. 2019. Contribution of cytokines to tissue damage during human respiratory syncytial virus infection. Frontiers in Immunology, 10, 452.

Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, Moreira L, López J A, Campo R, Marí M, Morales-Paytuví F, Tort O, Gubern A, Templin R M, Curson J E, Martel N, Català C, Lozano F, Tebar F, Enrich C, et al. 2020. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 370, 8085.

Boulant S, Targett-Adams P, McLauchlan J. 2007. Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. The Journal of General Virology, 88, 2204–2213.

Bozza P T, Bakker-Abreu I, Navarro-Xavier R A, Bandeira-Melo C. 2011. Lipid body function in eicosanoid synthesis: An update. Prostaglandins, Leukotrienes, and Essential FattyAcids, 85, 205–213.

Del Campo J A, García-Valdecasas M, Gil-Gómez A, Rojas Á, Gallego P, Ampuero J, Gallego-Durán R, Pastor H, Grande L, Padillo F J, Muntané J, Romero-Gómez M. 2018. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy. PLoS ONE, 13, e0191805.

Carvalho F A, Carneiro F A, Martins I C, Assuncao-Miranda I, Faustino A F, Pereira R M, Bozza P T, Castanho M A, Mohana-Borges R, Poian A T, Santos N C. 2012. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. Journal of Virology, 86, 2096–2108.

Chitraju C, Mejhert N, Haas J T, Diaz-Ramirez L G, Grueter CA, Imbriglio J E, Pinto S, Koliwad S K, Walther T C, Farese R V. 2017. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metabolism, 26, 407–418.

Coffey C M, Sheh A, Kim I S, Chandran K, Nibert M L, Parker J S. 2006. Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. Journal of Virology, 80, 8422–8438.

Criglar J M, Estes M K, Crawford S E. 2022. Rotavirus-induced lipid droplet biogenesis is critical for virus replication. Frontiers in Physiology, 13, 836870.

Dejardin E, Droin N M, Delhase M, Haas E, Cao Y, Makris C, Li Z W, Karin M, Ware C F, Green D R. 2002. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity, 17, 525–535.

Dias S S, Soares V C, Ferreira A C, Sacramento C Q, Fintelman-Rodrigues N, Temerozo J R, Teixeira L, Silva M A, Barreto E, Mattos M, Freitas C S, Azevedo-Quintanilha I G, Manso P P, Miranda M D, Siqueira M M, Hottz E D, Pão C R, Bou-Habib D C, Barreto-Vieira D F, Bozza F A, et al. 2020. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. Plos Pathogens, 16, e1009127.

Fonnesu R, Thunuguntla V B, Veeramachaneni G K, Bondili J S, Rocca V L, Filipponi C, Spezia P G, Sidoti M, Plicanti E, Quaranta P, Freer G, Pistello M, Mathai M L, Lai M. 2022. Palmitoylethanolamide (PEA) inhibits SARS-CoV-2 entry by interacting with S protein and ACE-2 receptor. Viruses, 14, 1080.

Gong L, Li J, Zhou Q, Xu Z, Chen L, Zhang Y, Xue C, Wen Z, Cao Y. 2017. A new Bat-HKU2-like coronavirus in Swine, China, 2017. Emerging Infectious Diseases, 23, 1607–1609.

Gizzi A S, Grove T L, Arnold J J, Jose J, Jangra R K, Garforth S J, Du Q, Cahill S M, Dulyaninova N G, Love J D, Chandran K, Bresnick A R, Cameron C E, Almo S C. 2018. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature, 558, 610–614.

Herker E, Ott M. 2012. Emerging role of lipid droplets in host/pathogen interactions. The Journal Biological Chemistry, 287, 2280–2287.

Karam B S, Morris R S, Bramante C T, Puskarich M, Zolfaghari E J, Lotfi-Emran S, Ingraham N E, Charles A, Odde D J, Tignanelli C J. 2021. mTOR inhibition in COVID-19: A commentary and review of efficacy in RNA viruses. Journal Medical Virology, 93, 1843–1846.

Kawai T, Adachi O, Ogawa T, Takeda K, Akira S.1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 11, 115–122.

Lau S K, Woo P C, Li K S, Huang Y, Wang M, Lam C S, Xu H, Guo R, Chan K H, Zheng B J, Yuen K Y. 2007. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology, 367, 428–439.

Lawrence T. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 1, a001651.

Lee J Y, Cortese M, Haselmann U, Tabata K, Romero-Brey I, Funaya C, Schieber N L, Qiang Y, Bartenschlager M, Kallis S, Ritter C, Rohr K, Schwab Y, Ruggieri A, Bartenschlager R. 2019. Spatiotemporal coupling of the hepatitis C virus replication cycle by creating a lipid droplet- proximal membranous replication compartment. Cell Reports, 27, 3602–3617.

Li L, Lv J, He Y, Wang Z. 2020. Gene network in pulmonary tuberculosis based on bioinformatic analysis. BMC Infectious Diseases, 20, 612.

Lonardo A, Leoni S, Alswat K A, Fouad Y. 2020. History of nonalcoholic fatty liver disease. International Journal of Molecular Sciences, 21, 5888.

Lu Y C, Yeh W C, Ohashi P S. 2008. LPS/TLR4 signal transduction pathway.  Cytokine, 42, 145–151.

Lyn R K, Hope G, Sherratt A R, McLauchlan J, Pezacki J P. 2013. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DII protein. PLoS ONE, 8, e78065.

Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky J M, Brenner D A, Seki E. 2010. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology, 139, 323–334.

Montgomery S T, Frey D L, Mall M A, Stick S M, Kicic A, Arest C F. 2020. Rhinovirus infection is associated with airway epithelial cell necrosis and inflammation via interleukin-1 in young children with cystic fibrosis. Frontiers in Immunology, 11, 596.

Nevo-Yassaf I, Lovelle M, Nahmias Y, Hirschberg K, Sklan E H. 2017. Live cell imaging and analysis of lipid droplets biogenesis in hepatatis C virus infected cells. Methods, 127, 30–36.

Olzmann J A, Carvalho P. 2019. Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20, 137–155.

Pålsson-Mcdermott E M, O’Neill L A. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology, 113, 153–62.

Pereira-Dutra F S, Teixeira L, Costa M F, Bozza P T. 2019. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. Journal of Leukocyte Biology, 106, 563–580.

Postler T S, Peng V, Bhatt D M, Ghosh S. 2021. Metformin selectively dampens the acute inflammatory response through an AMPK-dependent mechanism. Scientific Reports, 11, 18721.

Samsa M M, Mondotte J A, Iglesias N G, Assunção-Miranda I, Barbosa-Lima G, Poian A T, Bozza P T, Gamarnik A V. 2020. Dengue virus capsid protein usurps lipid droplets for viral particle formation. Plos Pathogens, 5, e1000632.

Shao M, Ye Z, Qin Y, Wu T. 2020. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease. Experimental and Therapeutic Medicine, 20, 26.

Weiss S R, Navas-Martin S. 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews (MMBR), 69, 635–664.

Woo P C, Lau S K, Li K S, Poon R W, Wong B H, Tsoi H W, Yip B C, Huang Y, Chan K H, Yuen K Y. 2006. Molecular diversity of coronaviruses in bats. Virology, 351, 180–187.

Xian H, Liu Y, Nilsson A R, Gatchalian R, Crother T R, Tourtellotte W G, Zhang Y, Aleman-Muench G R, Lewis G, Chen W, Kang S, Luevanos M, Trudler D, Lipton S A, Soroosh P, Teijaro J, Torre J C, Arditi M, Karin M, Sanchez-Lopez E. 2021. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 54, 1463–1477.

Xin G, Wei Z, Ji C, Zheng H, Gu J, Ma L, Huang W, Morris-Natschke S L, Yeh J L, Zhang R, Qin C, Wen L, Xing Z, Cao Y, Xia Q, Lu Y, Li K, Niu H, Lee K H, Huang W. 2016. Metformin uniquely prevents thrombosis by inhibiting platelet activation and mtDNA release. Scientific Reports, 6, 36222.

Yan J, Horng T. 2020. Lipid metabolism in regulation of macrophage functions. Trends in Cell Biology, 30, 979–989.

Ye J, Zhu N, Sun R, Liao W, Fan S, Shi F, Lin H, Jiang S, Ying Y. 2018. Metformin inhibits chemokine expression through the AMPK/NF-κB signaling pathway. Journal of Interferon & Cytokine Research, 38, 363–369.

Yu N, Liu X, Shi D, Bai L, Niu T, Liu Y. 2022. CD63 and C3AR1: The potential molecular targets in the progression of septic shock. International Journal of General Medicine, 15, 711–728.

Yu P W, Fu P F, Zeng L, Qi Y L, Li X Q, Wang Q, Yang G Y, Li H W, Wang J, Chu B B, Wang M D. 2022. EGCG restricts PRRSV proliferation by disturbing lipid metabolism. Microbiology Spectrum, 10, e0227621.

Zhang J. 2016. Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Research, 226, 71–84.

Zhang J, Lan Y, Li M Y, Lamers M M, Fusade-Boyer M, Klemm E, Thiele C, Ashour J, Sanyal S. 2018. Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production. Cell Host & Microbe, 23, 819–831.

Zhou P, Fan H, Lan T, Yang X L, Shi W F, Zhang W, Zhu Y, Zhang Y W, Xie Q M, Mani S, Zheng X S, Li B, Li J M, Guo H, Pei G Q, An         X P, Chen J W, Zhou L, Mai K J, Wu Z X, et al. 2018. Fatal swine acute diarrhoea syndrome caused by an HKU2-related                   coronavirus of bat origin. Nature, 556, 255–258. 
No related articles found!
No Suggested Reading articles found!