Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1017-1029    DOI: 10.1016/j.jia.2023.09.018
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C

Yuxiang Qin1#, Bao Zhang1, Shoufu Cui1, Xiaochun Qin1, Genying Li2

1 School of Biological Science and Technology, University of Jinan, Jinan 250022, China

2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China

 Highlights 
120 TaFLZs have been isolated in this study.
Over-expression of TaFLZ54D increases salt stress tolerance in wheat.
TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

FCS-like zinc finger (FLZ)C2-C2类锌指蛋白基因家族,参与种子的休眠,对蚜虫的抗性,糖信号和非生物胁迫响应。但是,人们对FLZs基因家族的功能,特别是其作用的分子机制的了解还非常有限。本研究我们在小麦中鉴定了120FLZ基因家族成员,利用转基因小麦揭示了TaFLZ54D的耐盐功能及其作用机制。表达研究表明TaFLZ54DNaCl诱导表达,且在120个FLZs中表达量最高。超表达TaFLZ54D可以提高小麦的耐盐性。转基因小麦植株具有较高的SODPOD酶活性、较高的可溶性糖含量和较低的Na+/K+比及MDA含量。钾离子跨膜转运蛋白和丝氨酸/苏氨酸激酶抑制因子在转基因植株和野生型植株中差异表达。酵母双杂交和荧光素酶互补实验分析表明TaSGT1aTaPP2CaTsFLZ54D的直接相互作用蛋白。总之,TaFLZ54D通过与TaSGT1aTaPP2Ca直接互作,降低Na+的吸收和减少氧化胁迫提高了耐盐性。TaFLZ54DTaSGT1aTaPP2Ca之间的互作表明:TaFLZ54D的耐盐性可能与负调控蛋白的泛素化降解之间存在一定关系。



Abstract  
FCS-like zinc finger (FLZ) gene family members are C2-C2 zinc finger proteins that take part in seed dormancy, resistance to Myzus persicae 1, sucrose signaling and abiotic stresse tolerance.  However, their functions, especially the molecular mechanism through which FLZs function, are not well understood.  In this study, we characterized 120 FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.  Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.  Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase (SOD) and peroxidase (POD) activities and soluble sugar content, but a lower Na+/K+ ratio and malondialdehyde (MDA) content than the wild type (WT) plants.  Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between TaFLZ54D transgenic wheat and the WT.  Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.  In summary, TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na+ absorption and mitigate oxidative stress.  The interaction between TaFLZ54D and TaSGT1, as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.


Keywords:  wheat        FLZ        salt tolerance        protein interaction        Na+ exclusion  
Received: 25 May 2023   Accepted: 09 August 2023
Fund: The study was supported by the National Natural Science Foundation of China (31871622) and the Key R&D Program of Shandong Province, China (2022LZG001).
About author:  #Correspondence Yuxiang Qin, Mobile: +86-13065092739, E-mail: chm_qinyx@ujn.edu.cn

Cite this article: 

Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. 2025. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C. Journal of Integrative Agriculture, 24(3): 1017-1029.

Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. 2002. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science295, 2073–2078.

Belda-Palazon B, Julian J, Coego A, Wu Q, Zhang X, Batistic O, Alquraishi S A, Kudla J, An C, Rodriguez P L. 2019. ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. The Plant Journal98, 813–825.

Chen Q, Zhang M, Shen S. 2011. Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiologiar Plantarum33, 273–278.

Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. 2021. Genome-wide identification and characterization of FCS-like zinc finger (FLZ) family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. International Journal of Molecular Science22, 3529.

Chen X, Zhang Z, Visser R G F, Broekgaarden C, Vosman B. 2013. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thalianaPLoS ONE8, e70914.

Chi Q, Du L, Ma W, Niu R, Wu B, Guo L, Ma M, Liu X, Zhao H. 2023. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings. Journal of Integrative Agriculture22, 981–998.

Choudhury S R, Choudhuri M A. 1985. Hydrogen peroxide metabolism as an index of water stress tolerance in jutePhysiologia Plantarum65, 467–480.

Ellouzi H, Hamed K B, Cela J, Munné-Bosch S, Abdelly C. 2011. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiologia Plantarum142, 128–143.

Giannopolitis C N, Ries S K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology59, 309–314.

Guo X J, Wang J R. 2017. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat. BMC Plant Biology17, 90.

Gupta P K, Balyan H S, Sharma S, Kumar R. 2020. Genetics of yield, abiotic stress tolerance and biofortifcation in wheat (Triticum aestivum L.). Theoretical and Applied Genetics133, 1569–1602.

Han P, Dong Y, Jiang H, Hu D, Hao Y. 2019. Molecular cloning and functional characterization of apple U-box E3 ubiquitin ligase gene MdPUB29 reveals its involvement in salt tolerance. Journal of Integrative Agriculture18, 1604–1612.

Heath R L, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics125, 189–198.

Hou X, Liang Y, He X, Shen Y, Huang Z. 2013. Novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thalianaPlant Molecular Biology Reporter31, 791–801.

Kavian S, Safarzadeh S, Yasrebi J. 2022. Zinc improves growth and antioxidant enzyme activity in Aloe vera plant under salt stress. South African Journal of Botany147, 1221–1229.

Kitagawa K, Skowyra D, Elledge S J, Wade H J, Philip H. 1999. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Molecular Cell4, 21–33.

Ma Y, Zhao J, Fu H, Yang T, Dong J, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S, Edwards D. 2021. Genome-wide identifcation, expression and functional analysis reveal the involvement of FCS-Like zinc finger gene family in submergence response in rice. Rice14, 76.

Maehly A C, Chance B. 1954. Assay of Catalases and Peroxidases, Methods of Biochemical Analysis. Interscience Publishers, New York.

Muhammed J K, Ashverya L. 2015. Expression of Arabidopsis FCS-like zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress. Frontiers in Plant Science6, 746.

Muhammed J K, Sharma M, Singh D, Mannully C T, Jindal S, Shukla B N, Laxmi A. 2018a. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in ArabidopsisThe Plant Journal94, 232–245.

Muhammed J K, Shukla B N, Jindal S, Gopan N Mannully C T, Laxmi A. 2018b. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. Journal of Biological Chemistry293, 13134–13150.

Muhammed J K, Sunita J, Mohan S, Prakhar A, Sreejath S, Manvi S, Chanchal T M, Ashverya L. 2022. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. Cell Reports39, 110631.

Qin Y, Cui S, Cui P, Zhang B, Quan X. 2021. TaFLZ2D enhances salinity stress tolerance via superior ability for ionic stress tolerance and ROS detoxification. Plant Physiology and Biochemistry168, 516–525.

Sabagh A E L, Islam M S, Skalicky M, Raza M A, Singh K, Hossain M A, Hossain A, Mahboob W, Iqbal M A, Ratnasekera D, Singhal R K, Ahmed S, Kumari A, Wasaya A, Sytar O, Brestic M, Çig F, Erman M, Rahman M H U, UIIah N, et al. 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Frontiers in Agronomy3, 661932.

Sah S K, Reddy K R, Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science7, 571.

Schilling S, Kennedy A, Pan S, Jermiin L S, Melzer R. 2020. Genome-wide analysis of MIKC-type MADS-box genes in wheat: Pervasive duplications, functional conservation and putative neofunctionalization. New Phytologist225, 511–529.

Szymańska K P, Polkowska-Kowalczyk L, Lichocka M, Maszkowska J, Dobrowolska G. 2019. SNF1-Related protein kinases SnRK2.4 and SnRK2.10 modulate ROS homeostasis in plant response to salt stress. International Journal of Molecular Sciences20, 143.

Wang C, Zhao Y, Han P, Yu J, Hao Y, Xu Q, You C, Hu D. 2022. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple. Journal of Integrative Agriculture, 21, 2264–2274.

Wu Q, Zhang X, Peirats-Llobet M, Belda-Palazon B, Wang X, Cui S, Yu X, Rodriguez, P L, An C. 2016. Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. The Plant Cell8, 2178–2196.

Xiao F, Zhou H. 2023. Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science13, 1053699.

Yang C, Shi G, Li Y, Luo M, Wang H, Wang J, Yuan L, Wang Y, Li Y. 2023. Genome-wide identification of SnRK1 catalytic α subunit and FLZ proteins in Glycyrrhiza inflata Bat. highlights their potential roles in licorice growth and abiotic stress responses. International Journal of Molecular Sciences24, 121.

Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology60, 796–804.

Yemm E W, Willis A J. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal57, 508–512.

Yu S, Wu J, Wang M, Shi W, Xia G, Jia J, Kang Z, Han D. 2020. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker based and pedigree-based kinship analyses. The Crop Journal8, 1011–1024.

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. 2020. How Plant hormones mediate salt stress responses. Trends in Plant Science25, 1117–1130.

Zhang H, Zhu J, Gong Z, Zhu J. 2022. Abiotic stress responses in plants. Nature Reviews Genetics23, 104–119.

Zhang S, Zhang R, Gao J, Gu T, Song G, Li W, Li D, Li Y, Li G. 2019. Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-Mediated CRISPR/Cas9 System. International Journal of Molecular Sciences20, 4257.

Zhao C, Zhang H, Song C, Zhu J, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation1, 100017.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.

[1] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[2] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[3] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[4] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[5] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

[6] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[7] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[8] YAN Sheng-nan, YU Zhao-yu, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng, ZHANG Hai-ping. Dissecting the genetic basis of grain color and pre-harvest sprouting resistance in common wheat by association analysis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2617-2631.
[9] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[10] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[11] FENG Shi-qian, ZHANG Neng, CHEN Jun, ZHANG Dao-gang, ZHU Kai-hui, CAI Ni, TU Xiong-bing, ZHANG Ze-hua. Serine protease inhibitors LmSPN2 and LmSPN3 co-regulate embryonic diapause in Locusta migratoria manilensis (Meyen) via the Toll pathway[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3720-3730.
[12] LIU Da-zhong, YANG Fei-fei, LIU Sheng-ping. Estimating wheat fractional vegetation cover using a density peak k-means algorithm based on hyperspectral image data[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2880-2891.
[13] CHEN Ying, LIU Feng-shan, TAO Fu-lu, GE Quan-sheng, JIANG Min, WANG Meng, ZHAO Feng-hua. Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2206-2215.
[14] LI Zhen-hai, JIN Xiu-liang, LIU Hai-long, XU Xin-gang, WANG Ji-hua. Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1547-1561.
No Suggested Reading articles found!