Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2605-2617    DOI: 10.1016/j.jia.2023.07.014
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings
Gaozhao Wu1, 2, Xingyu Chen1, 2, Yuguang Zang1, 2, Ying Ye1, 2, Xiaoqing Qian3, Weiyang Zhang1, 2, Hao Zhang1, 2, Lijun Liu1, 2, Zujian Zhang1, 2, Zhiqin Wang1, 2, Junfei Gu1, 2#, Jianchang Yang1, 2#
1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, China
2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
3 Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

现代水稻生产面临着提高粮食产量、减少化肥投入的多重挑战。然而土壤氮素供应与植物氮素需求往往不匹配,严重阻碍了这些目标地实现。基于植株氮素营养状况的诊断可以帮助农民更好地选择施肥时期和施肥量。本研究的目的是评价一种基于植株不同叶位叶绿素值相对SPAD值(RSPAD)无损评估水稻氮素需求的方法。本研究包含两个试验:不同氮肥梯度试验和基于RSPAD的氮肥运筹方法的评估试验。结果表明,较高的氮肥投入显著提高了现代高产超级水稻的产量,但以牺牲氮素利用效率为代价。氮营养指数(NNI)可以准确评价水稻氮素营养过剩、适宜和不足的情况。现代高产水稻适宜的氮肥施用量显著高于常规水稻。RSPAD的计算考虑了氮素在冠层内的不均匀分布,为顶部完全展开叶的SPAD值除以倒三叶的SPAD值。RSPAD参数可作为评估水稻高产和氮肥高效利用的指标,指导氮肥运筹。与农民习惯相比,基于RSPAD参数开发的氮肥运筹方法,能够显著减少了18.7%的氮肥施用量,提高产量1.7%,提高氮肥农学利用效率27.8%。这种新的氮肥运筹策略在提高水稻产量与氮肥利用效率,减少氮肥施用量方面具有巨大的应用潜力。



Abstract  

Modern rice production faces the dual challenges of increasing grain yields while reducing inputs of chemical fertilizer.  However, the disequilibrium between the nitrogen (N) supplement from the soil and the demand for N of plants is a serious obstacle to achieving these goals.  Plant-based diagnosis can help farmers make better choices regarding the timing and amount of topdressing N fertilizer.  Our objective was to evaluate a non-destructive assessment of rice N demands based on the relative SPAD value (RSPAD) due to leaf positional differences.  In this study, two field experiments were conducted, including a field experiment of different N rates (Exp. I) and an experiment to evaluate the new strategy of nitrogen-split application based on RSPAD (Exp. II).  The results showed that higher N inputs significantly increased grain yield in modern high yielding super rice, but at the expense of lower nitrogen use efficiency (NUE).  The N nutrition index (NNI) can adequately differentiate situations of excessive, optimal, and insufficient N nutrition in rice, and the optimal N rate for modern high yielding rice is higher than conventional cultivars.  The RSPAD is calculated as the SPAD value of the top fully expanded leaf vs. the value of the third leaf, which takes into account the non-uniform N distribution within a canopy.  The RSPAD can be used as an indicator for higher yield and NUE, and guide better management of N fertilizer application.  Furthermore, we developed a new strategy of nitrogen-split application based on RSPAD, in which the N rate was reduced by 18.7%, yield was increased by 1.7%, and the agronomic N use efficiency was increased by 27.8%, when compared with standard farmers’ practices.  This strategy of N fertilization shows great potential for ensuring high yielding and improving NUE at lower N inputs.

Keywords:  canopy        crop management practices        nitrogen        nitrogen nutrition index        rice        SPAD  
Received: 25 April 2023   Accepted: 12 June 2023
Fund: 

This project was finically supported by the National Key Research and Development Program of China (2022YFD2300304), the R&D Foundation of Jiangsu Province, China (BE2022425), and the Priority Academic Program Development of Jiangsu Higher-Education Institutions, China (PAPD).

About author:  Gaozhao Wu, E-mail: 211701108@stu.yzu.edu.cn; #Correspondence Junfei Gu, Tel/Fax: +86-514-87979317, E-mail: gujf@yzu.edu.cn; Jianchang Yang, Tel/Fax: +86-514-87979317, E-mail: jcyang@yzu.edu.cn

Cite this article: 

Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. 2024. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings. Journal of Integrative Agriculture, 23(8): 2605-2617.

Bélanger G, Richards J E. 2000. Dynamics of biomass and N accumulation of alfalfa under three N fertilization rates. Plant and Soil219, 177–185.

Bertheloot J, Martre P, Andrieu B. 2008. Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology148, 1707–1720.

Bohman B J, Rosen C J, Mulla D J. 2021. Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato. Field Crops Research262, 108041.

Cai S, Zhao X, Pittelkow C M, Fan M, Zhang X, Yan X. 2023. Optimal nitrogen rate strategy for sustainable rice production in China. Nature615, 73–79.

Caspy I, Nelson N. 2018. Structure of the plant photosystem I. Biochemical Society Transactions46, 285–294.

Caviglia O P, Melchiori R J M, Sadras V O. 2014. Nitrogen utilization efficiency in maize as affected by hybrid and N rate in late-sown crops. Field Crops Research168, 27–37.

Chambenoit C, Laurent F, Machet J M, Boizard H. 2004. Development of a decision support system for nitrogen management on potatoes. In: Mackerron D K L, Haverkort A J, eds., Decision Support Systems in Potato ProductionBringing Models into Practice. Wageningen Academic Publishers, The Netherlands. pp. 55–68.

Chen L, Xie H, Wang G, Qian X, Wang W, Xu Y, Zhang W, Zhang H, Liu L, Wang Z, Gu J, Yang J. 2021. Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crops Research265, 108123.

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Cheng S, Zhan X, Cao L. 2015. Breeding strategies for increasing yield potential in super hybrid rice. Frontiers of Agricultural Science and Engineering2, 277–282.

Evans J R, Clarke V C. 2019. The nitrogen cost of photosynthesis. Journal of Experimental Botany70, 7–15.

Feng D, Xu W, He Z, Zhao W, Yang M. 2020. Advances in plant nutrition diagnosis based on remote sensing and computer application. Neural Computing and Applications32, 16833–16842.

Gastal F, Lemaire G. 2002. N uptake and distribution in crops: An agronomical and ecophysiological perspective. Journal of Experimental Botany53, 789–799.

Greenwood D J, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson J J. 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany66, 425–436.

Gu J, Chen Y, Zhang H, Li Z, Zhou Q, Yu C, Kong X, Liu L, Wang Z, Yang J. 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research206, 74–85.

Gu J, Yang J. 2022. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment1, 7–14.

Guo J, Hu X, Gao L, Xie K, Ling N, Shen Q, Hu S, Guo S. 2017. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Scientific Reports7, 2101.

Guo J, Yang S, Gao L, Lu Z, Guo J, Sun Y, Kong Y, Ling N, Shen Q, Guo S. 2019. Nitrogen nutrient index and leaf function affect rice yield and nitrogen efficiency. Plant and Soil445, 7–21.

Herrmann A, Taube F. 2005. CORN nitrogen concentration at maturity — An indicator of nitrogen status in forage maize. Agronomy Journal97, 201–210.

Hikosaka K, Terashima I. 1996. Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Functional Ecology10, 335–343.

Hirose T, Werger M J A. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia72, 520–526.

Huang J, He F, Cui K, Buresh R J, Xu B, Gong W, Peng S. 2008. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Research105, 70–80.

Huang J, Wu J, Chen H, Zhang Z, Fang C, Shao C, Lin W, Weng P, Khan M U, Lin W. 2022. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China. Journal of Integrative Agriculture21, 351–364.

Jackson L E, Burger M, Cavagnaro T R. 2008. Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology59, 341–363.

Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America106, 3041–3046.

Lemaire G, Jeuffroy M H, Gastal F. 2008. Diagnosis tool for plant and crop N status in vegetative stage. European Journal of Agronomy28, 614–624.

Li W, Han M, Pang D, Chen J, Wang Y, Dong H, Chang Y, Jin M, Luo Y, Li Y, Wang Z. 2022. Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements. Journal of Integrative Agriculture21, 1290–1309.

Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. 2004. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature428, 287–292.

Pan G, Zhou P, Li Z, Smith P, Li L, Qiu D, Zhang X, Xu X, Shen S, Chen X. 2009. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. AgricultureEcosystems & Environment131, 274–280.

Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. 1996. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research47, 243–252.

Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R, Tang Q Y, Cui K H, Zhang F S, Dobermann A. 2010. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development30, 649–656.

Robertson G P, Vitousek P M. 2009. Nitrogen in agriculture: Balancing the cost of an essential resource. Annual Review of Environment and Resources34, 97–125.

Sadras V O, Lemaire G. 2014. Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Research164, 54–64.

Scharf P C, Lory J A. 2009. Calibrating reflectance measurements to predict optimal sidedress nitrogen rate for corn. Agronomy Journal101, 615–625.

Sheehy J E, Dionora M J A, Mitchell P L, Peng S, Cassman K G, Lemaire G, Williams R L. 1998. Critical concentrations: Implications for high yielding rice (Oryza sativa L.) cultivars in tropics. Field Crops Research59, 31–41.

Singh B, Singh Y, Ladha J K, Bronson K F, Balasubramanian V, Singh J, Khind C S. 2002. Chlorophyll meter and leaf color chart-based nitrogen management for rice and wheat in Northwestern India. Agronomy Journal94, 821–829.

Sun Y, Zhu S, Yang X, Weston M V, Wang K, Shen Z, Xu H, Chen L. 2018. Nitrogen diagnosis based on dynamic characteristics of rice leaf image. PLoS ONE13, e0196298.

Takashima T, Hikosaka K, Hirose T. 2004. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell and Environment27, 1047–1054.

Ulrich A. 1952. Physiological bases for assessing the nutritional requirements of plants. Annual Review of Plant Physiology3, 207–228.

Warren C R, Adams M A. 2001. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell and Environment24, 597–609.

Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z. 2016. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature534, 69–74.

Wickham H, Chang W, Henry L. 2021. ggplot2: Create elegant data visualisations using the grammar of graphics. [2023-1-1]. https://CRAN.R-project.org/package=ggplot2

Xiong D, Chen J, Yu T, Gao W, Ling X, Li Y, Peng S, Huang J. 2015. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific Reports5, 1–12.

Yan J, Wu Q, Qi D, Zhu J. 2022. Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation. Agricultural Water Management263, 107486.

Yang H, Yang J, Lv Y, He J. 2014. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Production Science17, 81–92.

Yousaf M, Li X, Zhang Z, Ren T, Cong R, Ata-Ul-Karim S T, Fahad S, Shah A N, Lu J. 2016. Nitrogen fertilizer management for enhancing crop productivity and nitrogen use efficiency in a rice–oilseed rape rotation system in China. Frontiers in Plant Science7, 1496.

Yue S, Meng Q, Zhao R, Li F, Chen X, Zhang F, Cui Z. 2012. Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the North China Plain. Agronomy Journal, 104, 523–529.

Zhang F S, Shen J B, Zhang J L, Zuo Y M, Li L, Chen X P. 2010. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: Implications for China. Advances in Agronomy107, 1–32.

Zhang W, Fu L, Men C, Yu J, Yao J, Sheng J, Xu Y, Wang Z, Liu L, Yang J, Zhang J. 2020. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food and Energy Security9, e201.

Ziadi N, Brassard M, Bélanger G, Claessens A, Tremblay N, Cambouris A N, Nolin M C, Parent L É. 2008. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agronomy Journal100, 1264–1273.

Zhou T Y, Li Z K, Li E P, Wang W L, Yuan L M, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. 2022. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels. Journal of Integrative Agriculture21, 1576–1592.

[1] Chengwei Huang, Zhijuan Ji, Qianqian Huang, Liling Peng, Wenwen Li, Dandan Wang, Zepeng Wu, Jia Zhao, Yongqi He, Zhoufei Wang. Natural variation in the cytochrome c oxidase subunit 5B OsCOX5B regulates seed vigor by altering energy production in rice[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2898-2910.
[2] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[3] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[4] Yongjian Chen, Lan Dai, Siren Cheng, Yong Ren, Huizi Deng, Xinyi Wang, Yuzhan Li, Xiangru Tang, Zaiman Wang, Zhaowen Mo.

Regulation of 2-acetyl-1-pyrroline and grain quality in early-season indica fragrant rice by nitrogen and silicon fertilization under different plantation methods [J]. >Journal of Integrative Agriculture, 2024, 23(2): 511-535.

[5] Tingting Zhou, Qian Zhao, Chengzhou Li, Lu Ye, Yanfang Li, Nemat O. Keyhani, Zhen Huang. Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera[J]. >Journal of Integrative Agriculture, 2024, 23(2): 621-638.
[6] HUI Jing, LIU Zhi, DUAN Feng-ying, ZHAO Yang, LI Xue-lian, AN Xia, WU Xiang-yu, YUAN Li-xing. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2413-2421.
[7] WU Ya-wei, LI Qiang, JIN Rong, CHEN Wei, LIU Xiao-lin, KONG Fan-lei, KE Yong-pei, SHI Hai-chun, YUAN Ji-chao. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different lownitrogen tolerances[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1246-1256.
[8] QIANG Sheng-cai, ZHANG Fu-cang, Miles Dyck, ZHANG Yan, XIANG You-zhen, FAN Jun-liang. Determination of critical nitrogen dilution curve based on leaf area index for winter wheat in the Guanzhong Plain, Northwest China[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2369-2380.
No Suggested Reading articles found!