Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (2): 649-668    DOI: 10.1016/j.jia.2023.07.035
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology

Dongfang Zhao1, 2*, Haobo Zhang3*, Xinyang Zhang1, 2, Fengwei Jiang1, Yijing Li2, Wentong Cai1#, Ganwu Li1, 4#

1State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

2College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China

3National Animal Tuberculosis Reference Laboratory, Division of Zoonoses Surveillance, China Animal Health and Epidemiology Center, Qingdao 266032, China 

4Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011-1134, the United States

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

禽致病性大肠杆菌(Avian pathogenic Escherichia coli ,APEC)是一种肠外致病性大肠杆菌(Extraintestinal pathogenic E. coli , ExPEC),可引起类和人类肠道以外组织的严重感染。MprAmicrocin production regulation, locus A,现更名为AbsR,a blood survival regulator)是MarRmultiple antibiotic resistance regulator)转录调节因子家族的成员。它调控源ExPEC荚膜生物合成基因的表达,并且具有作为药物靶标的潜力然而,目前的研究尚未完全阐明AbsR的靶基因及其调机制。研究ChIP-SeqRNA-Seq技术APEC AbsR调节子进行了系统分析,结果表明,AbsR直接调控99个基因,间接调控667个基因。接下来通过实时荧光定量PCR和体外实验证实了AbsR对靶基因转录水平和功能的影响。研究发现AbsRAPEC XM中直接调控K1荚膜基因簇的表达,从而使菌株能够抵抗巨噬细胞吞噬血清杀伤,并发挥毒力作用。此外,AbsR还直接激活酸感应信号系统基因evgAS及耐酸相关基因hdeBADgadE从而发挥体外耐酸能力。它还通过直接激活T2SS基因簇的表达,进而影响SslE蛋白的表达和分泌促进生物膜形成。此外,AbsR还间接调控I-F CRISPR系统基因的表达在小鼠模型中,我们探索了AbsR靶基因对APEC XM毒力的影响,证实AbsR主要通过荚膜基因簇发挥毒力。在另外三株不同来源的ExPEC分离株中,AbsR可以抑制1型菌毛基因和I-F CRISPR系统相关基因的表达,同时激活酸感应信号系统基因evgASGroup 2荚膜基因的表达;表明这些调控对于ExPEC共同的靶基因具有普适性。本研究首次系统梳理了MarR家族转录调控因子AbsR在肠道外致病性大肠杆菌的调控网络及其调控机制,明确了AbsR作为一类调控蛋白的调控方式致病机制。研究还首次证实AbsR对肠道外致病性大肠杆菌中的共同靶基因的调控具有普适性,这大大增进了我们对AbsR调控和功能的理解,拓展了AbsR调控网络的广度。这对于预防及治疗大肠杆菌病的药物选择及维持宿主共生菌群稳态提供了重要参考。此外,该研究结果也为将来基于AbsR的药物筛选和研发提供理论依据。



Abstract  

Avian pathogenic Escherichia coli (APEC) belonging to extraintestinal pathogenic Ecoli (ExPEC) can cause severe infections in extraintestinal tissues in birds and humans, such as the lungs and blood.  MprA (microcin production regulation, locus A, herein renamed AbsR, a blood survival regulator), a member of the MarR (multiple antibiotic resistance regulator) transcriptional regulator family, governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.  However, a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.  In this study, we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq (chromatin immunoprecipitation sequencing) and RNA-Seq (RNA sequencing) methods.  We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.  Furthermore, we showed that: 1) AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster; 2) AbsR positively impacts biofilm formation via direct regulation of the T2SS (type II secretion system) but plays a marginal role in virulence; and 3) AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.  Finally, our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.  Altogether, this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism, and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.  Interestingly, we found that AbsR severely represses the expression of the type I-F CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) systems, which could have implications in CRISPR biology and application.

Keywords:  Avian pathogenic Escherichia coli (APEC)        Extraintestinal pathogenic Escherichia coli (ExPEC)        AbsR        RNA-Seq        ChIP-Seq        Gene regulation   
Received: 09 April 2023   Accepted: 19 June 2023
Fund: 

This work was supported by the National Natural Science Foundation of China Young Scholars Project (31902242) and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (2017–2020). 

About author:  Dongfang Zhao, E-mail: zhaodongfang1104@163.com; Haobo Zhang, E-mail: zhanghaobo@cahec.cn; #Correspondence Wentong Cai, E-mail: caiwentong@caas.cn; Ganwu Li, E-mail: liganwu@iastate.edu * These authors contributed equally to this study

Cite this article: 

Dongfang Zhao, Haobo Zhang, Xinyang Zhang, Fengwei Jiang, Yijing Li, Wentong Cai, Ganwu Li. 2024.

The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology . Journal of Integrative Agriculture, 23(2): 649-668.

Afayibo D J A, Zhu H, Zhang B, Yao L, Abdelgawad H A, Tian M, Qi J, Liu Y, Wang S. 2022. Isolation, molecular characterization, and antibiotic resistance of avian pathogenic Escherichia coli in Eastern China. Veterinary Sciences, 9, 319.

Aldawood E, Roberts I S. 2022. Regulation of Escherichia coli group 2 capsule gene expression: A mini review and update. Frontiers in Microbiology, 13, 858767.

Ares M A, Fernández-Vázquez J L, Rosales-Reyes R, Jarillo-Quijada M D, von Bargen K, Torres J, González-y-Merchand J A, Alcántar-Curiel M D, De la Cruz M A. 2016. H-NS nucleoid protein controls virulence features of Klebsiella pneumoniae by regulating the expression of type 3 pili and the capsule polysaccharide. Frontiers in Cellular and Infection Microbiology, 6, 13.

Arshad M, Beggs G A, Brennan R G, Seed P C. 2020. Optimization of a noncanonical anti-infective: Interrogation of the target binding pocket for a small-molecule inhibitor of Escherichia coli polysaccharide capsule expression. Antimicrobial Agents and Chemotherapy, 65, e01208–e01228.

Audia J P, Webb C C, Foster J W. 2001. Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria. International Journal of Medical Microbiology, 291, 97–106.

Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner K H, Dove S L, Narasimhan G, Lory S, Mathee K. 2013. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Research, 42, 979–998.

Baldi D L, Higginson E E, Hocking D M, Praszkier J, Cavaliere R, James C E, Bennett-Wood V, Azzopardi K I, Turnbull L, Lithgow T, Robins-Browne R M, Whitchurch C B, Tauschek M. 2012. The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are required for biofilm formation and virulence of enteropathogenic Escherichia coli. Infection and Immunity, 80, 2042–2052.

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.

Boon N, Kaur M, Aziz A, Bradnick M, Shibayama K, Eguchi Y, Lund P A. 2020. The signaling molecule indole inhibits induction of the AR2 acid resistance system in Escherichia coli. Frontiers in Microbiology, 11, 474.

Brede C M, Shoskes D A. 2011. The etiology and management of acute prostatitis. Nature Reviews Urology, 8, 207–212.

Brooun A, Tomashek J J, Lewis K. 1999. Purification and ligand binding of EmrR, a regulator of a multidrug transporter. Journal of Bacteriology, 181, 5131–5133.

Brouns S J, Jore M M, Lundgren M, Westra E R, Slijkhuis R J, Snijders A P, Dickman M J, Makarova K S, Koonin E V, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960–964.

Burton N A, Johnson M D, Antczak P, Robinson A, Lund P A. 2010. Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics. Journal of Molecular Biology, 401, 726–742.

Chen Y H, Hsueh P R. 2012. Changing bacteriology of abdominal and surgical sepsis. Current Opinion in Infectious Diseases, 25, 590–595.

Cherepanov P P, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158, 9–14.

Corbett D, Hudson T, Roberts I S. 2010. Bacterial polysaccharide capsules. Prokaryotic Cell Wall Compounds (Structure and Biochemistry), 2010, 111–132.

Dale A P, Woodford N. 2015. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. Journal of Infection, 71, 615–626.

Datsenko K A, Wanner B L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences  of the United States of America, 97, 6640–6645.

Eguchi Y, Utsumi R. 2014. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. Journal of Bacteriology, 196, 3140–3149.

Foxman B, Brown P. 2003. Epidemiology of urinary tract infections: Transmission and risk factors, incidence, and costs. Infectious Disease Clinics of North America, 17, 227–241.

Goh K G, Phan M D, Forde B M, Chong T M, Yin W F, Chan K G, Ulett G C, Sweet M J, Beatson S A, Schembri M A. 2017. Genome-wide discovery of genes required for capsule production by uropathogenic Escherichia coli. mBio, 8, e01558-e01575.

Goller C C, Arshad M, Noah J W, Ananthan S, Evans C W, Nebane N M, Rasmussen L, Sosa M, Tower N A, White E L, Neuenswander B, Porubsky P, Maki B E, Rogers S A, Schoenen F, Seed P C. 2014. Lifting the mask: Identification of new small molecule inhibitors of uropathogenic Escherichia coli group 2 capsule biogenesis. PLoS ONE, 9, e96054.

Goller C C, Seed P C. 2010. High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents. PLoS ONE, 5, e11642.

Gu H, Cai X, Zhang X, Luo J, Zhang X, Hu X, Cai W, Li G. 2021. A previously uncharacterized two-component signaling system in uropathogenic Escherichia coli coordinates protection against host-derived oxidative stress with activation of hemolysin-mediated host cell pyroptosis. Plos Pathogens, 17, e1010005.

Gu S, Shevchik V E, Shaw R, Pickersgill R W, Garnett J A. 2017. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. Biochimica et Biophysica Acta (BBA) (Proteins and Proteomics), 1865, 1255–1266.

Hu J, Afayibo D J A, Zhang B, Zhu H, Yao L, Guo W, Wang X, Wang Z, Wang D, Peng H, Tian M, Qi J, Wang S. 2022. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Frontiers in Microbiology, 13, 1049391.

Iguchi A, Thomson N R, Ogura Y, Saunders D, Ooka T, Henderson I R, Harris D, Asadulghani M, Kurokawa K, Dean P, Kenny B, Quail M A, Thurston S, Dougan G, Hayashi T, Parkhill J, Frankel G. 2009. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127: H6 strain E2348/69. Journal of Bacteriology, 191, 347–354.

Itou J, Eguchi Y, Utsumi R. 2009. Molecular mechanism of transcriptional cascade initiated by the EvgS/EvgA system in Escherichia coli K-12. Bioscience, Biotechnology, and Biochemistry, 73, 870–878.

Jeong J, Lee J Y, Kang M S, Lee H J, Kang S I, Lee O M, Kwon Y K, Kim J H. 2021. Comparative characteristics and zoonotic potential of avian pathogenic Escherichia coli (APEC) isolates from chicken and duck in South Korea. Microorganisms, 9, 946.

Kaper J B, Nataro J P, Mobley H L. 2004. Pathogenic Escherichia coli. Nature Reviews Microbiology, 2, 123–140.

Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar S S, Bhaskara Rao K V. 2014. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS ONE, 9, e90972.

Kato A, Ohnishi H, Yamamoto K, Furuta E, Tanabe H, Utsumi R. 2000. Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Bioscience, Biotechnology, and Biochemistry, 64, 1203–1209.

Kim K S. 2003. Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury. Nature Reviews Neuroscience, 4, 376–385.

Köhler C D, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli? International Journal of Medical Microbiology, 301, 642–647.

Li G, Ewers C, Laturnus C, Diehl I, Alt K, Dai J, Antão E M, Schnetz K, Wieler L H. 2008. Characterization of a yjjQ mutant of avian pathogenic Escherichia coli (APEC). Microbiology, 154, 1082–1093.

Li G, Tivendale K A, Liu P, Feng Y, Wannemuehler Y, Cai W, Mangiamele P, Johnson T J, Constantinidou C, Penn C W, Nolan L K. 2011. Transcriptome analysis of avian pathogenic Escherichia coli O1 in chicken serum reveals adaptive responses to systemic infection. Infection and Immunity, 79, 1951–1960.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26, 589–595.

Li H, Hu S, Yan X, Yang Y, Liu W, Bu Z, Li G, Cai W. 2021. An extracytoplasmic function (ECF) sigma/anti-sigma factor system regulates hypochlorous acid resistance and impacts expression of the type IV secretion system in Brucella melitensis. Journal of Bacteriology, 203, e0012721.

Li N, Wei S, Chen J, Yang F, Kong L, Chen C, Ding X, Chu Z. 2018. OsASR 2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. Plant Biotechnology Journal, 16, 771–783.

Ma J, An C, Jiang F, Yao H, Logue C, Nolan L K, Li G. 2018. Extraintestinal pathogenic Escherichia coli increase extracytoplasmic polysaccharide biosynthesis for serum resistance in response to bloodstream signals. Molecular Microbiology, 110, 689–706.

Ma J, Bao Y, Sun M, Dong W, Pan Z, Zhang W, Lu C, Yao H. 2014. Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infection and Immunity, 82, 3867–3879.

Masuda N, Church G M. 2002. Escherichia coli gene expression responsive to levels of the response regulator EvgA. Journal of Bacteriology, 184, 6225–6234.

Mobley H L, Green D M, Trifillis A L, Johnson D E, Chippendale G R, Lockatell C V, Jones B D, Warren J W. 1990. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: Role of hemolysin in some strains. Infection and Immunity, 58, 1281–1289.

Moriel D G, Tan L, Goh K G, Phan M D, Ipe D S, Lo A W, Peters K M, Ulett G C, Beatson S A, Schembri M A. 2016. A novel protective vaccine antigen from the core Escherichia coli genome. mSphere, 1, e00326–e00342.

Mulvey M A, Schilling J D, Hultgren S J. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infection and Immunity, 69, 4572–4579.

Nesta B, Valeri M, Spagnuolo A, Rosini R, Mora M, Donato P, Alteri C J, Del Vecchio M, Buccato S, Pezzicoli A, Bertoldi I, Buzzigoli L, Tuscano G, Falduto M, Rippa V, Ashhab Y, Bensi G, Fontana M R, Seib K L, Mobley H L, et al. 2014. SslE elicits functional antibodies that impair in vitro mucinase activity and in vivo colonization by both intestinal and extraintestinal Escherichia coli strains. PLoS Pathogens, 10, e1004124.

Palaniappan R U, Zhang Y, Chiu D, Torres A, Debroy C, Whittam T S, Chang Y F. 2006. Differentiation of Escherichia coli pathotypes by oligonucleotide spotted array. Journal of Clinical Microbiology, 44, 1495–1501.

Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

Pitout J D. 2012. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Frontiers in Microbiology, 3, 9.

Ranfaing J, Dunyach-Remy C, Lavigne J P, Sotto A. 2018. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) in reducing the motility and the biofilm formation of uropathogenic Escherichia coli. PLoS ONE, 13, e0202609.

Rodionov D A, Gelfand M S, Mironov A A, Rakhmaninova A B. 2001. Comparative approach to analysis of regulation in complete genomes: Multidrug resistance systems in gamma-proteobacteria. Journal of Molecular Microbiology and Biotechnology, 3, 319–324.

Ronco T, Stegger M, Olsen R H, Sekse C, Nordstoga A B, Pohjanvirta T, Lilje B, Lyhs U, Andersen P S, Pedersen K. 2017. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production. BMC Genomics, 18, 13.

Russell D W, Sambrook J. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Cold Spring Harbor, NY.

Sharma H, Tal R, Clark N A, Segars J H. 2014. Microbiota and pelvic inflammatory disease. Seminars in Reproductive Medicine, 32, 43–49.

Sheehan L M, Budnick J A, Fyffe-Blair J, King K A, Settlage R E, Caswell C C. 2020. The endoribonuclease RNase E coordinates expression of mRNAs and small regulatory RNAs and is critical for the virulence of Brucella abortus. Journal of Bacteriology, 202, e00240–e00260.

Silver R P, Aaronson W, Sutton A, Schneerson R. 1980. Comparative analysis of plasmids and some metabolic characteristics of Escherichia coli K1 from diseased and healthy individuals. Infection and Immunity, 29, 200–206.

Strozen T G, Li G, Howard S P. 2012. YghG (GspSβ) is a novel pilot protein required for localization of the GspSβ type II secretion system secretin of enterotoxigenic Escherichia coli. Infection and Immunity, 80, 2608–2622.

Talan D A, Stamm W E, Hooton T M, Moran G J, Burke T, Iravani A, Reuning-Scherer J, Church D A. 2000. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis in women: A randomized trial. The Journal of American Medical Association, 283, 1583–1590.

Tapader R, Bose D, Dutta P, Das S, Pal A. 2018. SslE (YghJ), a cell-associated and secreted lipoprotein of neonatal septicemic Escherichia coli, Induces toll-like receptor 2-dependent macrophage activation and proinflammation through NF-κB and MAP kinase signaling. Infection and Immunity, 86, e00399–e00417.

Teng C H, Cai M, Shin S, Xie Y, Kim K J, Khan N A, Di Cello F, Kim K S. 2005. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infection and Immunity, 73, 2923–2931.

Weiss-Muszkat M, Shakh D, Zhou Y, Pinto R, Belausov E, Chapman M R, Sela S. 2010. Biofilm formation by and multicellular behavior of Escherichia coli O55:H7, an atypical enteropathogenic strain. Applied and Environmental Microbiology, 76, 1545–1554.

Westra E R, Pul Ü, Heidrich N, Jore M M, Lundgren M, Stratmann T, Wurm R, Raine A, Mescher M, Van Heereveld L. 2010. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Molecular Microbiology, 77, 1380–1393.

Whitfield C. 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annual Review of Biochemistry, 75, 39–68.

Wiles T J, Kulesus R R, Mulvey M A. 2008. Origins and virulence mechanisms of uropathogenic Escherichia coli. Experimental and Molecular Pathology, 85, 11–19.

Xiong A, Gottman A, Park C, Baetens M, Pandza S, Matin A. 2000. The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region. Antimicrobial Agents and Chemotherapy, 44, 2905–2907.

Xu Q, Yang X, Chan E W C, Chen S. 2021. The hypermucoviscosity of hypervirulent K. pneumoniae confers the ability to evade neutrophil-mediated phagocytosis. Virulence, 12, 2050–2059.

Xue C, Sashital D G. 2019. Mechanisms of type IE and IF CRISPR-Cas systems in Enterobacteriaceae. EcoSal Plus, 8, doi: 10.1128/ecosalplus.ESP-0008-2018.

Yang D, Kong Y, Sun W, Kong W, Shi Y. 2019. A dopamine-responsive signal transduction controls transcription of Salmonella enterica Serovar Typhimurium virulence genes. mBio, 10, e02772–e02790.

Yang J, Baldi D L, Tauschek M, Strugnell R, ARobins-Browne R M. 2007. Transcriptional regulation of the yghJ-pppA-yghG-gspCDEFGHIJKLM cluster, encoding the type II secretion pathway in enterotoxigenic Escherichia coli. Journal of Bacteriology, 189, 142–150.

Zhang H, Chen X, Nolan L K, Zhang W, Li G. 2019. Identification of host adaptation genes in extraintestinal pathogenic Escherichia coli during infection in different hosts. Infection and Immunity, 87, e00666–e00685.

Zhuge X, Wang S, Fan H, Pan Z, Ren J, Yi L, Meng Q, Yang X, Lu C, Dai J. 2013. Characterization and functional analysis of AatB, a novel autotransporter adhesin and virulence factor of avian pathogenic Escherichia coli. Infection and Immunity, 81, 2437–2447.

[1] Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts [J]. >Journal of Integrative Agriculture, 2024, 23(1): 239-250.

[2] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[3] WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping. Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2372-2383.
[4] HUO Dong-ao, ZHU Bin, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian. Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1541-1546.
No Suggested Reading articles found!