Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3810-3815    DOI: 10.1016/j.jia.2023.05.018
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
Biotechnology of α-linolenic acid in oilseed rape (Brassica napus) using FAD2 and FAD3 from chia (Salvia hispanica)
XUE Yu-fei1, 2, INKABANGA TSEKE Alain1, 2, 3, YIN Neng-wen1, 2, JIANG Jia-yi1, 2, ZHAO Yan-ping1, 2, LU Kun1, 2, LI Jia-na1, 2, DING Yan-song1, 2, ZHANG Shi-qing1, 2, CHAI You-rong1, 2#
1 Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University/
Chongqing Key Laboratory of Crop Quality Improvement/College of Agronomy and Biotechnology, Southwest University,
Chongqing 400715, P.R.China
2 Engineering Research Center of South Upland Agriculture, Ministry of Education/Academy of Agricultural Sciences, Southwest
University, Chongqing 400715, P.R.China
3 Faculty of Agricultural Sciences, National Pedagogic University (UPN), Kinshasa 8815, D.R.Congo
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  α-亚麻酸(ALA, 18:3Δ9,12,15)是人类必需的脂肪酸,因为它是合成ω-3长链多不饱和脂肪酸(LC-PUFA)的前体物质。当今世界,人们普遍缺乏ALA,因为大多数大宗食用油中ALA含量较低或缺乏,基于生物技术提升大宗油料作物的ALA含量是一种很有前途的策略。在已知的油料作物中,奇亚(Salvia hispanica)的种子油中ALA含量最高。在本研究中,基于连接肽LP4-2A,我们构建了奇亚FAD2FAD3的融合基因,然后构建了其种子特异性启动子PNapA驱动的植物表达载体,通过根癌农杆菌介导成功转化到大宗油料作物甘蓝型油菜(Brassica napus)中。在T0、T1和T2株系的种子中,ALA的平均含量分别为20.86%、23.54%和24.92%,分别为未转化材料(对照)的2.21、2.68和3.03倍(含量分别为9.42%、8.78%和8.22%)。T0、T1和T2植株的种子中,最高ALA含量分别为38.41%、35.98%和39.19%,是对照的4.10—4.77倍。转基因株系中,脂肪酸(FA)途径结构基因BnACCD、BnFATA、BnSAD、BnSCD、BnDGAT1、BnDGAT2BnDGAT3以及正调控转录因子的编码基因BnWRI1、BnLEC1、BnL1L、BnLEC2、BnABI3、BnbZIP67BnMYB96均显著上调,而油脂积累负调控因子、次生代谢正调控因子的编码基因BnTT1、BnTT2、BnTT8、BnTT16、BnTTG1BnTTG2均显著下调,这表明外源融合基因ShFAD2-ShFAD3直接和间接地重塑了转基因油菜种子中FA相关的整个代谢网络的正、负效应位点。

Abstract  α-Linolenic acid (ALA, 18:3Δ9,12,15) is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA). Modern people generally suffer from deficiency of ALA because most staple food oils are low or lack ALA content. Biotechnological enrichment of ALA in staple oil crops is a promising strategy. Chia (Salvia hispanica) has the highest ALA content in its seed oil among known oil crops. In this study, the FAD2 and FAD3 genes from chia were engineered into a staple oil crop, oilseed rape (Brassica napus), via Agrobaterium tumefaciens-mediated transformation of their LP4-2A fusion gene construct driven by the seed-specific promoter PNapA. In seeds of T0, T1, and T2 lines, the average ALA contents were 20.86, 23.54, and 24.92%, respectively, which were 2.21, 2.68, and 3.03 folds of the non-transformed controls (9.42, 8.78, and 8.22%), respectively. The highest seed ALA levels of T0, T1, and T2 plants were 38.41, 35.98, and 39.19% respectively, which were 4.10–4.77 folds of the respective controls. FA-pathway enzyme genes (BnACCD, BnFATA, BnSAD, BnSCD, BnDGAT1, BnDGAT2, and BnDGAT3) and positive regulatory genes (BnWRI1, BnLEC1, BnL1L, BnLEC2, BnABI3, BnbZIP67, and BnMYB96) were all significantly up-regulated. In contrast, BnTT1, BnTT2, BnTT8, BnTT16, BnTTG1, and BnTTG2, encoding negative oil accumulation regulators but positive secondary metabolism regulators, were all significantly down-regulated. This means the foreign ShFAD2-ShFAD3 fusion gene, directly and indirectly, remodeled both positive and negative loci of the whole FA-related network in transgenic B. napus seeds.
Keywords:  biotechnology        α-linolenic acid        oilseed rape (Brassica napus             FAD2        FAD3        chia (Salvia hispanica)  
Received: 29 December 2022   Accepted: 30 March 2023
Fund: This work was supported by the National Natural Science Foundation of China (31871549, 32001441 and 32272015), the Chongqing Research Program of Basic Research and Frontier Technology, China (cstc2015jcyjBX0143), the Fundamental Research Funds for the Central Universities, China (XDJK2020C038), the National Key R&D Program of China (2016YFD0100506), and the Young Eagles Program of Chongqing Municipal Commission of Education, China (CY220219).
About author:  #Correspondence CHAI You-Rong, E-mail: chaiyourong2@163.com, chaiyour@swu.edu.cn

Cite this article: 

XUE Yu-fei, INKABANGA TSEKE Alain, YIN Neng-wen, JIANG Jia-yi, ZHAO Yan-ping, LU Kun, LI Jia-na, DING Yan-song, ZHANG Shi-qing, CHAI You-rong. 2023. Biotechnology of α-linolenic acid in oilseed rape (Brassica napus) using FAD2 and FAD3 from chia (Salvia hispanica). Journal of Integrative Agriculture, 22(12): 3810-3815.

Baker E J, Miles E A, Burdge G C, Yaqoob P, Calder P C. 2016. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Progress in Lipid Research64, 30–56.

Belide S, Shrestha P, Kennedy Y, Leonforte A, Devine M D, Petrie J R, Singh S P, Zhou X R. 2022. Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in Brassica junceaPlant Biotechnology Journal20, 19–21.

Ciftci O N, Przybylski R, Rudzińska M. 2012. Lipid components of flax, perilla, and chia seeds. European Journal of Lipid Science and Technology114, 794–800.

Damude H G, Zhang H X, Farrall L, Ripp K G, Tomb J F, Hollerbach D, Yadav N S. 2006. Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proceedings of the National Academy of Sciences of the United States of America103, 9446–9451.

Eckert H, LaVallee B, Schweiger B J, Kinney A J, Cahoon E B, Clemente T. 2006. Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta224, 1050–1057.

Fu C, Chai, Y R, Ma L J, Wang R, Hu K, Wu J Y, Li J N, Liu X, Lu J X. 2017. Evening primrose (Oenothera biennis) Δ6 fatty acid desaturase gene family: cloning, characterization, and engineered GLA and SDA production in a staple oil crop. Molecular Breeding37, 83.

Gao L, Chen W, Xu X, Zhang J, Singh T K, Liu S, Zhang D, Tian L, White A, Shrestha P, Zhou X R, Llewellyn D, Green A, Singh S P, Liu Q. 2020. Engineering trienoic fatty acids into cottonseed oil improves low-temperature seed germination, plant photosynthesis and cotton fiber quality. Plant and Cell Physiology61, 1335–1347.

Ghasemi Fard S, Wang F, Sinclair A J, Elliott G, Turchini G M. 2019. How does high DHA fish oil affect health? A systematic review of evidence. Critical Reviews in Food Science and Nutrition59, 1684–1727.

Lian J, Lu X, Yin N, Ma L, Lu J, Liu X, Li J, Lu J, Lei B, Wang R, Chai Y. 2017. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napusPlant Science254, 32–47.

Liu H L, Yin Z J, Xiao L, Xu Y N, Qu L Q. 2012. Identification and evaluation of omega-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. Journal of Experimental Botany63, 3279–3287.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods25, 402–408.

Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Stobart A K, Lazarus C M. 2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology22, 739–745.

Rong H, Yang W, Xie T, Wang Y, Wang X, Jiang J, Wang Y. 2022. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content. Journal of Integrative Agriculture21, 2211–2226.

Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J. 2011. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiology156, 1577–1588.

Wang Z, Chen M, Chen T, Xuan L, Li Z, Du X, Zhou L, Zhang G, Jiang L. 2014. TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds. Plant Journal77, 757–769.

Win A N, Xue Y, Chen B, Liao F, Chen F, Yin N, Mei F, Wang B, Shi X, He Y, Chai Y. 2018. Chia (Salvia hispanica) experiment at a 30°N site in Sichuan Basin, China. Ciencia Rural48, e20180105.

Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X. 2005. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nature Biotechnology23, 1013–1017.

Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, Batley J, Jiang J, Wang Y P. 2020. Targeted knockout of BnTT2 homologs for yellow-seeded Brassica napus with reduced flavonoids and improved fatty acid composition. Journal of Agricultural and Food Chemistry68, 5676–5690.

Xu Y, Mietkiewska E, Shah S, Weselake R J, Chen G. 2020. Punicic acid production in Brassica napusMetabolic Engineering62, 20–29.

Xue Y, Chen B, Win A N, Fu C, Lian J, Liu X, Wang R, Zhang X, Chai Y. 2018. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. PLoS ONE13, e0191432.

Xue Y, Yin N, Chen B, Liao F, Win A N, Jiang J, Wang R, Jin X, Lin N, Chai Y. 2017. Molecular cloning and expression analysis of two FAD2 genes from chia (Salvia hispanica). Acta Physiologiae Plantarum39, 95.

Yang Y, Kong Q, Lim A, Lu S, Zhao H, Guo L, Yuan L, Ma W. 2022. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. Plant Communications3, 100328.

Yeom W W, Kim H J, Lee K R, Cho H S, Kim J Y, Jung H W, Oh S W, Jun S E, Kim H U, Chung Y S. 2020. Increased production of α-linolenic acid in soybean seeds by overexpression of Lesquerella FAD3-1Frontiers in Plant Science10, 1812.

Yuan J, Jiang S, Jian J, Liu M, Yue Z, Xu J, Li J, Xu C, Lin L, Jing Y, Zhang X, Chen H, Zhang L, Fu T, Yu S, Wu Z, Zhang Y, Wang C, Zhang X, Huang L, et al. 2022. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostiiNature Communications13, 7328.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!