Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Monitoring of agricultural drought based on multi-source remote sensing data in Heilongjiang Province, China

Chenfa Jiang1, 2*, Changhui Ma1*, Sibo Duan1# , Xiaoxiao Min1, Youzhi Zhang3, Dandan Li1, Xia Zhang2

1 State Key Laboratory of Efficient Utilization of Arable Land in China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Hebei International Joint Research Center for Remote Sensing of Agricultural Drought Monitoring, Hebei GEO University, Shijiazhuang 050031, China

3 Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

 Highlights 

The multivariable linear regression was used to establish composite drought indices.

MCDI-9 can effectively represent the affected area of drought, while MCDI-12 can effectively represent grain crop yields.

Significant spatial variations in agricultural drought were observed throughout the region.

Spring and early summer are the most drought-prone periods.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

农业是社会经济发展的基础,受到天气和气候条件的高度影响。干旱是农业发展和粮食安全面临的最严重威胁之一。目前,基于气象站的地面干旱监测和基于遥感数据的干旱监测均存在局限性,包括更新频率低、覆盖范围有限和精度不足。为了监测中国黑龙江省的农业干旱,本研究利用多源遥感数据,整合降水、地表温度、土壤湿度和植被指数,构建了不同时间尺度(3、6、912个月)的多源复合干旱指数(MCDIs)。本研究利用多种遥感数据计算了一系列单一干旱指数,包括降水条件指数(PCI)、土壤湿度条件指数(SMCI)、植被条件指数(VCI)和温度条件指数(TCI),并采用多变量线性回归方法将这些指数整合为MCDIs。分析结果表明,与单一干旱指数相比,MCDIs与标准化降水蒸散指数(SPEI)具有更高的相关性。在不同MCDIs与受灾作物面积及主要粮食产量的相关性分析中,MCDI-9与受灾作物面积的相关性最高,而 MCDI-12与粮食产量的相关性最高。这表明,不同时间尺度下的 MCDI-9MCDI-12是农业干旱的更优指标。MCDI 的时空分析结果表明,黑龙江省的干旱主要发生在早春,并逐渐从大兴安岭地区向东南平原扩展。随后干旱在夏季逐渐缓解,并在秋收期结束。因此,本研究构建的MCDIs可作为黑龙江省及类似地区有效的干旱监测方法和指标。



Abstract  

Agriculture is the foundation of socio-economic development and is highly influenced by weather and climate conditions. Drought is one of the most significant threats to agricultural development and food security. Currently, in-situ drought monitoring based on weather stations and based on remote sensing data has limitations, including infrequent updates, limited coverage, and low accuracy. This study leverages multi-source remote sensing data to monitor agricultural drought in Heilongjiang Province, China. We develop multi-source composite drought indices (MCDIs) at various timescales (3, 6, 9, and 12 months) by integrating precipitation, land surface temperature, soil moisture, and vegetation indices. Utilizing remote sensing data from various sources, we calculated a series of single drought indices, which are the precipitation condition index (PCI), soil moisture condition index (SMCI), vegetation condition index (VCI), and temperature condition index (TCI). These are then integrated into MCDIs using a multivariable linear regression approach. The analysis reveals that MCDIs correlate more with standardized precipitation evapotranspiration index (SPEI) than single drought indices. When examining the correlation between different MCDIs and the affected area of crops and major grain production, MCDI-9 showed the highest correlation with the affected area of crops, while MCDI-12 showed the highest correlation with grain production. This suggests that these two MCDIs at different timescales were better indicators of agricultural drought. The spatio-temporal analysis of MCDI indicates that drought in Heilongjiang Province primarily occurs in early spring, gradually spreading from the Greater Khingan Mountains region to the southeastern plains. The drought gradually alleviates during the summer, ending by the autumn harvest period. Therefore, the MCDIs constructed in this study can serve as effective methods and indicators for drought monitoring in Heilongjiang Province and similar regions.

Keywords:  agricultural drought        spatio-temporal monitoring        multi-source remote sensing data        SPEI        Heilongjiang Province  
Online: 18 April 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2022YFD2001105).

About author:  Chenfa Jiang, E-mail: 22120405011@hgu.edu.cn; Changhui Ma, E-mail: machanghui@caas.cn; #Correspondence Sibo Duan, E-mail: duansibo@caas.cn These authors contributed equally to this study.

Cite this article: 

Chenfa Jiang, Changhui Ma, Sibo Duan , Xiaoxiao Min, Youzhi Zhang, Dandan Li, Xia Zhang. 2025. Monitoring of agricultural drought based on multi-source remote sensing data in Heilongjiang Province, China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.027

Ahmed K, Shahid S, Chung E S, Wang X J, Harun S B. 2019. Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. Journal of Hydrology, 570, 473-485.

Bezdan J, Bezdan A, Blagojević B, Mesaroš M, Pejić B, Vranešević M, Pavić D, Nikolić-Đorić E. 2019. SPEI-based approach to agricultural drought monitoring in Vojvodina region. Water, 11, 1481.

Bhardwaj J, Kuleshov Y, Chua Z W, Watkins A B, Choy S, Sun Q. 2022. Evaluating satellite soil moisture datasets for drought monitoring in Australia and the South-West Pacific. Remote Sensing, 14, 3971.

Chen W Y, Xiao Q G, Sheng Y W. 1994. Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sensing of Environment, 9, 106-112.

Dan W, Wei H, Shuwen Z, Kun B, Bao X, Yi W, Yue L. 2015. Processes and prediction of land use/land cover changes (LUCC) driven by farm construction: The case of Naoli River Basin in Sanjiang Plain. Environmental Earth Sciences, 73, 4841-4851.

Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y. 2013. A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253.

El-Beltagy A, Madkour M J A, Security F. 2012. Impact of climate change on arid lands agriculture. Journal of Arid Environments, 1, 1-12.

Ezenwaji E, NzoiwuC, Chima G. 2017. Analysis of precipitation concentration index (PCI) for Awka urban area, Nigeria. Hydrology: Current Research, 8, 1-6.

Haile G G, Tang Q, Li W, Liu X, Zhang X. 2020. Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews Water, 7, e1407.

Hao C, Zhang J, Yao F. 2015. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. International Journal of Applied Earth Observation and Geoinformation, 35, 270-283.

Hayes M J, Svoboda M D, Wiihite D A, Vanyarkho O V. 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society80, 429-438.

Holzman M E, Rivas R, Piccolo M C. 2014. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28, 181-192.

Jiang Q, Li W, Fan Z, He X, Sun W, Chen S, Wen J, Gao J, Wang J. 2021. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. Journal of Hydrology, 595, 125660.

Kahil M T, Dinar A, Albiac J. 2015. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology, 522, 95-109.

Kogan F N. 1995a. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91-100.

Kogan F N. 1995b. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76, 655-668.

Kogan F N. 1997. Global drought watch from space. International Journal of Remote Sensing, 78, 621-636.

Kogan F N. 2007. Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11, 1405-1419.

Koutroulis A G. 2019. Dryland changes under different levels of global warming. Science of the Total Environment, 655, 482-511.

Kustas W P, Mecikalski J R, Pimstein A, Wardlow B, Hain C, Anderson M C. 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate, 24, 2025-2044.

Kuwayama Y, Thompson A, Bernknopf R, Zaitchik B, Vail P. 2019. Estimating the impact of drought on agriculture using the US Drought Monitor. American Journal of Agricultural Economics, 101, 193-210.

Li Y, Chang J, Gao X, Zhang L, Wang L, Ren C. 2024. A case study on the impacts of future climate change on soybean yield and countermeasures in Fujin city of Heilongjiang province, China. Frontiers in Agronomy, 6, 1257830.

Liu W T, Kogan F N. 2007. Monitoring regional drought using the Vegetation Condition Index. International Journal of Remote Sensing, 17, 2761-2782.

Liu X, Cao K, Li M. 2024. Assessing the impact of meteorological and agricultural drought on maize yields to optimize irrigation in Heilongjiang Province, China. Journal of Cleaner Production, 434, 139897.

Liu Y, Hwang Y. 2015. Improving drought predictability in Arkansas using the ensemble PDSI forecast technique. Stochastic Environmental Research Risk Assessment, 29, 79-91.

McKee T B, Doesken N J, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. pp. 179-184. 

Meyer S J. 1992. Drought and natural resources management in the United States: Impacts and implications of the 1987-89 drought. Great Plains Research, 2, 312.

Michael C, Charles H, James R, Hill J, Stefan S, Graham V M. 2018. World Atlas of Desertification. Publications Office of the European Union, Luxembourg. pp. 1-69

Mishra A, Bruno E, Zilberman D. 2021. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Science of the Total Environment, 754, 142210.

Mishra A K, Singh V P. 2010. A review of drought concepts. Journal of Hydrology, 391, 202-216.

Montgomery D C, Peck E A, Vining G G. 2021. Introduction to Linear Regression Analysis. John Wiley Sons, Hoboken, New Jersey.

Mukhawana M B, Kanyerere T, Kahler D. 2023. Review of in-situ and remote sensing-based indices and their applicability for integrated drought monitoring in South Africa. Water, 15, 240.

Palmer W C. 1965. Meteorological Drought. US (Research Paper No. 45). Retrieved from US Department of Commerce, Weather Bureau.Washington, D.C.

Peng S, Ding Y, Wen Z, Chen Y, Cao Y, Ren J. 2017. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agricultural and Forest Meteorology, 233, 183-194.

Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Reviews, 161, 259-278.

Ren G, Zhou Y, Chu Z, Zhou J, Zhang A, Guo J, Liu X. 2008. Urbanization effects on observed surface air temperature trends in North China. Journal of Climate, 21, 1333-1348.

Rhee J, Im J, Carbone G J. 2010. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 114, 2875-2887.

Sabater J M. 2019. ERA5-Land monthly averaged data from 1950 to present. Copernicus climate change service (C3S) climate data store (CDS) [DS]. [2023-11-23] https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview

Saha A, Pal S C, Chowdhuri I, Roy P, Chakrabortty R, Shit M. 2023. Vulnerability assessment of drought in India: Insights from meteorological, hydrological, agricultural and socio-economic perspectives. Gondwana Research, 123, 68-88.

Souza A G S S, Neto A R, de Souza L L. 2021. Soil moisture-based index for agricultural drought assessment: SMADI application in Pernambuco State-Brazil. Remote Sensing of Environment, 252, 112124.

Sun P, Ma Z, Zhang Q, Singh V P, Xu C Y. 2022. Modified drought severity index: Model improvement and its application in drought monitoring in China. Journal of Hydrology, 612, 128097. 

Thornthwaite C W. 1955. The Water Balance. Laboratory of Climatology, Publications in Climatology, New Jersey. 

Vicente-Serrano S M, Beguería S, Gimeno L, Eklundh L, Giuliani G, Weston D, El Kenawy A, López-Moreno J I, Nieto R, Ayenew T. 2012. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography, 34, 471-486.

Vicente-Serrano S M, Beguería S, López-Moreno J I. 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718.

Vicente-Serrano S M, Quiring S M, Peña-Gallardo M, Yuan S, Domínguez-Castro F. 2020. A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953.

Vogt J V, Somma F. 2013. Drought and Drought Mitigation in Europe. Vol. 14. Springer Science Business Media, Berlin, Germany.

Wagner W, Lemoine G, Rott H. 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70, 191-207.

Wang H, Chen Y, Pan Y, Li W. 2015. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. Journal of Hydrology, 523, 283-296.

Wang Y, Fu B, Liu Y, Li Y, Feng X, Wang S. 2021. Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agricultural and Forest Meteorology, 306, 108468.

Waseem M, Ajmal M, Kim T W. 2015. Development of a new composite drought index for multivariate drought assessment. Journal of Hydrology, 527, 30-37.

Wilhite D A, Glantz M H. 1985. Understanding: The drought phenomenon: The role of definitions. Water International, 10, 111-120.

Willmott C J, Feddema J J. 1992. A more rational climatic moisture index. Geographical Review, 44, 84-88.

Wu J, Liu Z, Yao H, Chen X, Chen X, Zheng Y, He Y. 2018. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought. Journal of Hydrology, 563, 726-736.

Xu P, Zhou T, Zhao X, Luo H, Gao S, Li Z, Cao L. 2018. Diverse responses of different structured forest to drought in Southwest China through remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 69, 217-225.

Zargar A, Sadiq R, Naser B, Khan F. 2011. A review of drought indices. Environmental Reviews, 19, 333-349.

Zhang A, Jia J. 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 12-23.

Zhang X, Chen N, Li J, Chen Z, Niyogi D. 2017. Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 188, 141-163.

Zhao H, Gao G, An W, Zou X, Li H, Hou M. 2017. Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Physics and Chemistry of the Earth, Parts A/B/C, 102, 48-58.

Zhou M, Liu X, Meng Q, Zeng X, Zhang J, Li D, Wang J, Du W, Ma X. 2019. Additional application of aluminum sulfate with different fertilizers ameliorates saline-sodic soil of Songnen Plain in Northeast China. Journal of Soils Sediments, 19, 3521-3533.

Zhou Z, Shi H, Fu Q, Li T, Gan T Y, Liu S. 2020. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China. Journal of Hydrology, 588, 125097.

Zia R, Nawaz M S, Siddique M J, Hakim S, Imran A. 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242, 126626.

Zuo D, Cai S, Xu Z, Peng D, Kan G, Sun W, Pang B, Yang H. 2019. Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data. Agricultural Water Management, 222, 125-138.

No related articles found!
No Suggested Reading articles found!