Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (8): 2357-2371    DOI: 10.1016/S2095-3119(21)63896-0
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene

SUN Yu-hang1, 2, 3, 4*, ZHAI Gui-ying1, 2, 3*, PANG Yong-jia1, 2, 3, LI Rui1, 2, 3, LI Yu-mao1, 2, 3, CAO Zhi-ping1, 2, 3, WANG Ning1, 2, 3, LI Hui1, 2, 3, WANG Yu-xiang1, 2, 3 

1  Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, P.R.China

2 Key Laboratory of Animal Genetics, Breeding and Reproduction, Heilongjiang General Colleges and Universities, Harbin 150030, P.R.China

3 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P.R.China

4 Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze 354100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究的目的旨在确定鸡PPARγPlin1基因调控作用,并阐明其确切的分子机制。本研究首先利用RT-qPCR技术检测PPARγ激动剂对cPlin1基因表达的影响,而后通过双荧光素酶报告基因和RT-qPCR技术分析PPARγcPlin1基因启动子活性和mRNA表达的影响,再通过免疫共沉淀和双荧光素酶报告基因技术研究PPARγ与RXRα的协同作用对cPlin1基因启动子活性的影响,最后通过启动子截短和突变分析以及凝胶阻滞技术确定cPlin1基因启动子中PPARγ2的具体调控位点。基因表达分析结果表明,PPARγ的特异性激动剂—曲格列酮可以显著增强(P<0.05)PPARγ的靶基因LPLA-FABPFAS基因Plin1基因的mRNA表达水平,提示cPlin1基因的表达可能受PPARγ的调控;进一步的报告基因和基因表达分析结果表明,PPARγ2能够显著促进P<0.01)cPlin1基因启动子活性及mRNA表达水平,但PPARγ1却无此作用;免疫共沉淀和报告基因结果表明,PPARγ与RXRα之间存在蛋白质相互作用;与单独过表达RXRα相比,共表达PPARγ2和RXRα显著增强(P<0.01)cPlin1基因的启动子活性,但共表达PPARγ1和RXRα则没有表现出类似的现象;启动子的截短及突变分析以及凝胶阻滞结果表明,PPARγ2可以cPlin1基因启动子的-1126/-1116位点结合促进P<0.01)cPlin1基因表达。与哺乳动物相似,(i)鸡PPARγPlin1基因的转录具有正调控作用,其中PPARγ2是发挥此调控作用的主要蛋白亚型;(ii)PPARγ2是通过与cPlin1基因启动子区域的-1126/-1116位点结合来实现促进cPlin1基因表达作用的。本研究的创新性是明确了鸡PPARγPlin1基因表达的调控作用并揭示了PPARγ2调控Plin1基因转录的分子机制




Abstract  

Perilipin1 (PLIN1) is a major phosphorylated protein that specifically coats the surface of neutral lipid droplets (LDs) in adipocytes and plays a crucial role in regulating the accumulation and hydrolysis of triacylglycerol (TG).  Mammalian studies have shown that Plin1 gene transcription is mainly regulated by peroxisome proliferator-activated receptor-gamma (PPARγ), the master regulator of adipogenesis.  However, the regulatory mechanism of the chicken Plin1 (cPlin1) gene is poorly understood.  The present study aimed to investigate whether Plin1 is regulated by PPARγ in chickens and identify its exact molecular mechanism.  Reporter gene and expression assays showed that PPARγ2, but not PPARγ1, activated (P<0.01) the cPlin1 gene promoter.  An electrophoretic mobility shift assay and mutational analysis revealed that PPARγ2 bound to a special site in the cPlin1 gene promoter to enhance its expression.  In summary, our results show that PPARγ promotes the expression of the cPlin1 gene and that PPARγ2 is the main regulatory isoform.

Keywords:  chicken        PPAR gamma        isoform        Plin1        transcriptional regulation  
Received: 22 June 2021   Accepted: 24 January 2022
Fund: This work was supported by the National Natural Science Foundation of China (31201796 and 32072704), the China Agriculture Research System of MOF and MARA (CARS-41), and the Natural Science Foundation of Heilongjiang Province, China (LH2020C017).  
About author:  SUN Yu-hang, E-mail: 763331201@qq.com; ZHAI Gui-ying, E-mail: 1813707250@qq.com; Correspondence WANG Yu-xiang, Tel: +86-451-55191495, E-mail: wyx2000@neau.edu.cn * These authors contributed equally to this study.

Cite this article: 

SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. 2022. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene. Journal of Integrative Agriculture, 21(8): 2357-2371.

Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R. 2004. The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes. Journal of Biological Chemistry, 279, 10070–10076.
Baek S J, Wilson L C, Hsi L C, Eling T E. 2003. Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity. Journal of Biological Chemistry, 278, 5845–5853.
Brasaemle D L, Levin D M, Adler-Wailes D C, Londos C. 2000. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochimica et Biophysica Acta, 1483, 251–262.
Castro-Chavez F, Yechoor V K, Saha P K, Martinez-Botas J, Wooten E C, Sharma S, O’Connell P, Taegtmeyer H, Chan L. 2003. Coordinated upregulation of oxidative pathways and downregulation of lipid biosynthesis underlie obesity resistance in perilipin knockout mice: A microarray gene expression profile. Diabetes, 52, 2666–2674.
Chen X P, Yu W H, Jiang J H, Wang Y D, Liu Y Z, Zhang N, Wang X Z. 2016. Impact of cattle PPARγ expression on adipocyte proliferation and differentiation. Chinese Journal of Veterinary Science, 36, 101–107. (in Chinese)
Dalen K T, Schoonjans K, Ulven S M, Weedon-Fekjaer M S, Bentzen T G, Koutnikova H, Auwerx J, Nebb H I. 2004. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes, 53, 1243–1252.
Duan K, Sun Y, Zhang X, Zhang T, Zhang W, Zhang J, Wang G, Wang S, Leng L, Li H, Wang N. 2015. Identification and characterization of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poultry Science, 94, 2516–2527.
Ghoshal S, Tyagi R, Zhu Q, Chakraborty A. 2016. Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis. The International Journal of Biochemistry & Cell Biology, 78, 149–155.
Han X, Meng F, Cao X, Du X, Bu G, Kong F, Huang A, Zeng X. 2021. FSH promotes fat accumulation by activating PPARγ signaling in surgically castrated, but not immunocastrated, male pigs. Theriogenology, 160, 10–17.
Houseknecht K L, Cole B M, Steele P J. 2002. Peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands: A review. Domestic Animal Endocrinology, 22, 1–23.
Ju L, Han J, Zhang X, Deng Y, Yan H, Wang C, Li X, Chen S, Alimujiang M, Li X, Fang Q, Yang Y, Jia W. 2019. Obesity-associated inflammation triggers an autophagy-lysosomal response in adipocytes and causes degradation of perilipin 1. Cell Death & Disease, 10, 121.
Lee J M, Kim S S, Cho Y S. 2012. The role of PPARgamma in Helicobacter pylori infection and gastric carcinogenesis. PPAR Research, 2012, 687570.
Li M, Lee T W, Mok T S, Warner T D, Yim A P, Chen G G. 2005. Activation of peroxisome proliferator-activated receptor-gamma by troglitazone (TGZ) inhibits human lung cell growth. Journal of Cellular Biochemistry, 96, 760–774.
Li Y. 2019. Regulation of GPR120 on lipid metabolism and inflammatory responses in bovine adipocytes. MSc thesis, Jilin University, China. (in Chinese)
Lu C, Wang X, Zhao X, Xin Y, Liu C. 2020. Long non-coding RNA ARAP1-AS1 accelerates cell proliferation and migration in breast cancer through miR-2110/HDAC2/PLIN1 axis. Bioscience Reports, 40, BSR20191764.
Lu X, Gruia-Gray J, Copeland N G, Gilbert D J, Jenkins N A, Londos C, Kimmel A R. 2001. The murine perilipin gene: The lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mammalian Genome, 12, 741–749.
Martin S, Parton R G. 2006. Lipid droplets: A unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology, 7, 373–378.
Mizunoe Y, Kobayashi M, Hoshino S, Tagawa R, Itagawa R, Hoshino A, Okita N, Sudo Y, Nakagawa Y, Shimano H, HigamiY. 2020. Cathepsin B overexpression induces degradation of perilipin 1 to cause lipid metabolism dysfunction in adipocytes. Scientific Reports, 10, 634.
Mu F, Jing Y, Ning B, Huang J, Cui T, Guo Y, You X, Yan X, Li H, Wang N. 2020. Peroxisome proliferator-activated receptor gamma isoforms differentially regulate preadipocyte proliferation, apoptosis, and differentiation in chickens. Poultry Science, 99, 6410–6421.
Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H, Hauser S, Rosen E D, Ge K, Roeder R G, Spiegelman B M. 2002. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. Journal of Biological Chemistry, 277, 41925–41930.
Mysore R, Zhou Y, Sadevirta S, Savolainen-Peltonen H, Nidhina Haridas P A, Soronen J, Leivonen M, Sarin A P, Fischer-Posovszky P, Wabitsch M, Yki-Jarvinen H, Olkkonen V M. 2016. MicroRNA-192* impairs adipocyte triglyceride storage. Biochimica et Biophysica Acta, 1861, 342–351.
Nagai S, Shimizu C, Umetsu M, Taniguchi S, Endo M, Miyoshi H, Yoshioka N, Kubo M, Koike T. 2004. Identification of a functional peroxisome proliferator-activated receptor responsive element within the murine perilipin gene. Endocrinology, 145, 2346–2356.
Natori Y, Nasui M, Kihara-Negishi F. 2017. Neu1 sialidase interacts with perilipin 1 on lipid droplets and inhibits lipolysis in 3T3-L1 adipocytes. Genes to Cells, 22, 485–492.
Nazim U M, Moon J H, Lee Y J, Seol J W, Park S Y. 2017. PPARgamma activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Oncotarget, 8, 26819–26831.
Palhinha L, Liechocki S, Hottz E D, Pereira J, de Almeida C J, Moraes-Vieira P M M, Bozza P T, Maya-Monteiro C M. 2019. Leptin induces proadipogenic and proinflammatory signaling in adipocytes. Frontiers in Endocrinology (Lausanne), 10, 841.
Pan Z X, Wang J W, Tang H, Xiang S X, Wang J, Lu J, Yang C, Han C C. 2010. Cloning of goose perilipin gene, tissues expression and the effect of overfeeding on its mRNA level. Chinese Journal of Animal and Veterinary Sciences, 41, 939–943. (in Chinese)
Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, Chakladar A, Czech M P. 2007. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. Journal of Biological Chemistry, 282, 34213–34218.
Ren D, Collingwood T N, Rebar E J, Wolffe A P, Camp H S. 2002. PPARgamma knockdown by engineered transcription factors: Exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes & Development, 16, 27–32.
Shijun L, Khan R, Raza S H A, Jieyun H, Chugang M, Kaster N, Gong C, Chunping Z, Schreurs N M, Linsen Z. 2020. Function and characterization of the promoter region of perilipin 1 (PLIN1): Roles of E2F1, PLAG1, C/EBPbeta, and SMAD3 in bovine adipocytes. Genomics, 112, 2400–2409.
Skat-Rordam J, Hojland Ipsen D, Lykkesfeldt J, Tveden-Nyborg P. 2019. A role of peroxisome proliferator-activated receptor gamma in non-alcoholic fatty liver disease. Basic & Clinical Pharmacology & Toxicology, 124, 528–537.
Sun Y, Zhai G, Li R, Zhou W, Li Y, Cao Z, Wang N, Li H, Wang Y. 2020. RXRalpha Positively regulates expression of the chicken PLIN1 gene in a PPARgamma-independent manner and promotes adipogenesis. Frontiers in Cell and Developmental Biology, 8, 349.
Surgucheva I, Surguchov A. 2008. Gamma-synuclein: Cell-type-specific promoter activity and binding to transcription factors. Journal of Molecular Neuroscience, 35, 267–271.
Viccica G, Francucci C M, Marcocci C. 2010. The role of PPARgamma for the osteoblastic differentiation. Journal of Endocrinological Investigation, 33, 9–12.
Vidal-Puig A, Jimenez-Linan M, Lowell B B, Hamann A, Hu E, Spiegelman B, Flier J S, Moller D E. 1996. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. Journal of Clinical Investigation, 97, 2553–2561.
Villapol S. 2018. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology, 38, 121–132.
Wang S, Zhang Y, Xu Q, Yuan X, Dai W, Shen X, Wang Z, Chang G, Wang Z, Chen G. 2018. The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos). PLoS ONE, 13, e0196371.
Wang W, Zhang T, Wu C, Wang S, Wang Y, Li H, Wang N. 2017. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS ONE, 12, e0177348.
Yao Y, Li X, Wang W, Liu Z, Chen J, Ding M, Huang X. 2018. MRT, functioning with NURF complex, regulates lipid droplet size. Cell Reports, 24, 2972–2984.
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. 2020. The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. Journal of Cellular Physiology, 235, 328–338.
Zhang L, Zhu Q, Liu Y, Gilbert E R, Li D, Yin H, Wang Y, Yang Z, Wang Z, Yuan Y, Zhao X. 2015. Polymorphisms in the Perilipin gene may affect carcass traits of chinese meat-type chickens. Asian-Australasian Journal of Animal Sciences, 28, 763–770.
Zhang Y, Wang Y, Wang H, Ma X, Zan L. 2019. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL. Molecular and Cellular Probes, 44, 29–36.
Zhao X, Liu Y, Luo Y, Zhou Y, Zhu Q. 2009. Study on the relationship between developmental variants of PLIN gene expression and fatness traits. Chinese Journal of Animal and Veterinary Sciences, 40, 149–154. (in Chinese)
Zhou J, Cui S, He Q, Guo Y, Pan X, Zhang P, Huang N, Ge C, Wang G, Gonzalez F J, Wang H, Hao H. 2020. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nature Communications, 11, 240.
Zhou Y, Han H, Lu Y, Cao D, Li F, Liu W, Gao J, Lei Q. 2015. Polymorphism in PLIN gene intron 6 and its association with carcass and fatness traits in chicken. Chinese Animal Husbandry and Veterinary Medicine, 42, 2695–2700. (in Chinese)
Zou R, Xu G, Liu X C, Han M, Jiang J J, Huang Q, He Y, Yao Y. 2010. PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis. Acta Pharmacologica Sinica, 31, 43–50.
[1] ZHANG Ting, ZHANG Yong-xia, SUN Yu-ming, XU Xiao-yang, WANG Yin-jie, CHONG Xin-ran, YANG Yong-heng and YUAN Hai-yan.

Isolation and functional analysis of SrMYB1, a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1058-1067.

[2] HUI Jing, LIU Zhi, DUAN Feng-ying, ZHAO Yang, LI Xue-lian, AN Xia, WU Xiang-yu, YUAN Li-xing. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2413-2421.
[3] CHEN Ke-qin, GUO Yun-na, SONG Meng-ru, DAI Hong-yan, ZHANG Zhi-hong. Isolation and characterization of the secondary wall-related SND1 gene in hawthorn[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2007-2014.
No Suggested Reading articles found!