Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (5): 1414-1423    DOI: 10.1016/S2095-3119(20)63577-8
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum
HUANG Tian-yu1, 3*, ZHANG Rui-bin1, 2*, YANG Lu-lu1, CAO Song1, Frederic FRANCIS3, WANG Bing1, WANG Gui-rong1, 2
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China
3 Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究通过系统发育分析鉴定了蚜虫中一个保守的气味受体分支,并对这一支中豌豆蚜气味受体ApisOr23的功能进行了研究。序列分析的结果显示,豌豆蚜、大豆蚜和棉蚜的同源受体Or23序列相似性为94.28%。此外,我们对8种蚜虫同源受体Or23序列进行保守基序 (motif) 分析,进一步验证了Or23分支的高度保守性。组织特异性表达分析结果显示,豌豆蚜ApisOr23主要在触角高表达。随后,我们利用非洲爪蟾卵母细胞表达系统对ApisOr23进行体外功能研究,结果显示在所有测试的化合物中,ApisOr23对反-2-己烯醛、顺-2-己烯醇、庚醇、4’-乙基苯乙酮和乙酸乙酯这5种植物挥发物有明显的电生理活性。其中,反-2-己烯醛作为豆科植物的一种主要挥发物,能够最大程度地激活ApisOr23。本研究揭示了蚜虫中保守的气味受体Or23的功能,推测该受体在蚜虫寄主识别过程中起到重要作用。




Abstract  Pea aphid, Acyrthosiphon pisum, is a serious pest of many different leguminous plants, and it mainly relies on its odorant receptors (Ors) to discriminate among host species.  However, less is known about the role that Ors play in the host plant location.  In this study, we identified a novel conserved odorant receptor clade by phylogenetic analysis, and conducted the functional analysis of ApisOr23 in A. pisum.  The results showed that the homologous Ors from A. pisum, Aphis glycines and Aphis gossypii share 94.28% identity in amino acid sequences.  Moreover, conserved motifs were analyzed using the annotated homologous Or23 from eight aphid species, providing further proof of the high conservation level of the Or23 clade.  According to the tissue expression pattern analysis, ApisOr23 was mainly expressed in the antennae.  Further functional study using a heterologous Xenopus expression system revealed that ApisOr23 was tuned to five plant volatiles, namely trans-2-hexen-1-al, cis-2-hexen-1-ol, 1-heptanol, 4´-ethylacetophenone, and hexyl acetate.  Among them, trans-2-hexen-1-al, which is one of the main volatile organic compounds released from legume plants, activated the highest response of ApisOr23.  Our findings suggest that the conserved Or23 clade in most aphid species might play an important role in host plant detection.

Keywords:  Acyrthosiphon pisum        odorant receptor       phylogenetic analysis        two-electrode voltage clamp        trans-2-hexen-1-al  
Received: 19 August 2020   Accepted: 18 November 2020
Fund: This work was funded by the National Natural Science Foundation of China (31572072 and 31725023), the Intergovernmental International Science, Technology and Innovation Cooperation Key Project, China (2019YFE0105800), and the Shenzhen Science and Technology Program, China (KQTD20180411143628272).  The funders had no role in study design, data collection or analysis, decision to publish or preparation of the manuscript. 
About author:  HUANG Tian-yu, E-mail: huangty_caas@hotmail.com; ZHANG Rui-bin, E-mail: zhangruibin1990@126.com; Correspondence WANG Gui-rong, E-mail: wangguirong@caas.cn; WANG Bing, E-mail: bwang@ippcaas.cn; Frederic FRANCIS, E-mail: frederic.francis@uliege.be * These authors contributed equally to this study.

Cite this article: 

HUANG Tian-yu, ZHANG Rui-bin, YANG Lu-lu, CAO Song, Frederic FRANCIS, WANG Bing, WANG Gui-rong. 2022. Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum. Journal of Integrative Agriculture, 21(5): 1414-1423.

Allmann S, Baldwin I T. 2010. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science, 329, 1075–1078.
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. 2009. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, W202–W208.
Bian L, Sun X L, Cai X M, Chen Z M. 2014. Slow release of plant volatiles using sol-gel dispensers. Journal of Economic Entomology, 107, 2023–2029.
Caillaud M C, Via S. 2000. Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. The American Naturalist, 156, 606–621.
Cao D, Liu Y, Walker W B, Li J, Wang G. 2014. Molecular characterization of the Aphis gossypii olfactory receptor gene families. PLoS ONE, 9, e101187.
Cao S, Liu Y, Guo M, Wang G. 2016. A conserved odorant receptor tuned to floral volatiles in three Heliothinae species. PLoS ONE, 11, e0155029.
Capella-Gutierrez S, Silla-Martinez J M, Gabaldon T. 2009. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973.
Chang H, Liu Y, Ai D, Jiang X, Dong S, Wang G. 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Current Biology, 27, 1610–1615.
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Chen L, Tian K, Xu X, Fang A, Cheng W, Wang G, Liu W, Wu J. 2020. Detecting host-plant volatiles with odorant receptors from Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Journal of Agricultural and Food Chemistry, 68, 2711–2717.
Chen W, Shakir S, Bigham M, Richter A, Fei Z, Jander G. 2019. Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). Gigascience, 8, giz033.
Cui W C, Wang B, Guo M B, Liu Y, Jacquin-Joly E, Yan S C, Wang G R. 2018. A receptor-neuron correlate for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology, 97, 31–39.
Dardouri T, Gautier H, Ben Issa R, Costagliola G, Gomez L. 2019. Repellence of Myzus persicae (Sulzer): evidence of two modes of action of volatiles from selected living aromatic plants. Pest Management Science, 75, 1571–1584.
Dobritsa A A, van der Goes van Naters W, Warr C G, Steinbrecht R A, Carlson J R. 2003. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827–841.
Duvaux L, Geissmann Q, Gharbi K, Zhou J J, Ferrari J, Smadja C M, Butlin R K. 2015. Dynamics of copy number variation in host races of the pea aphid. Molecular Biology and Evolution, 32, 63–80.
Dweck H K, Ebrahim S A, Farhan A, Hansson B S, Stensmyr M C. 2015. Olfactory proxy detection of dietary antioxidants in Drosophila. Current Biology, 25, 455–466.
Eyres I, Jaquiery J, Sugio A, Duvaux L, Gharbi K, Zhou J J, Legeai F, Nelson M, Simon J C, Smadja C M, Butlin R, Ferrari J. 2016. Differential gene expression according to race and host plant in the pea aphid. Molecular Ecology, 25, 4197–4215.
Forstner M, Breer H, Krieger J. 2009. A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. International Journal of Biological Science, 5, 745–757.
Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E. 2005. Is the (E)-β-farnesene only volatile terpenoid in aphids? Journal of Applied Entomology, 129, 6–11.
Hallem E A, Ho M G, Carlson J R. 2004. The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965–979.
Hansen A K, Moran N A. 2011. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proceedings of the National Academy of Sciences of the United States of America, 108, 2849–2854.
Hansson B S, Stensmyr M C. 2011. Evolution of insect olfaction. Neuron, 72, 698–711.
Han B, Zhang Q H, Byers J A. 2012. Attraction of the tea aphid, Toxoptera aurantii, to combinations of volatiles and colors related to tea plants. Entomologia Experimentalis et Applicata, 144, 258–269
He Z, Zhang H, Gao S, Lercher M J, Chen W H, Hu S. 2016. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research, 44, W236–W241.
Hodge S, Powell G. 2010. Conditional facilitation of an aphid vector, Acyrthosiphon pisum, by the plant pathogen, pea enation mosaic virus. Journal of Insect Science, 10, 155.
International Aphid Genomics Consortium. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8, e1000313.
Jaquiery J, Peccoud J, Ouisse T, Legeai F, Prunier-Leterme N, Gouin A, Nouhaud P, Brisson J A, Bickel R, Purandare S, Poulain J, Battail C, Lemaitre C, Mieuzet L, Le Trionnaire G, Simon J C,  Rispe C. 2018. Disentangling the causes for faster-X evolution in aphids. Genome Biology and Evolution, 10, 507–520.
Jaquiery J, Stoeckel S, Nouhaud P, Mieuzet L, Maheo F, Legeai F, Bernard N, Bonvoisin A, Vitalis R, Simon J C. 2012. Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex. Molecular Ecology, 21, 5251–5264.
Jiang X, Zhang Q, Qin Y, Yin H, Zhang S, Li Q, Zhang Y, Fan J, Chen J. 2019. A chromosome-level draft genome of the grain aphid Sitobion miscanthi. Gigascience, 8, giz101.
Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
Keesey I W, Doll G, Chakraborty S D, Baschwitz A, Lemoine M, Kaltenpoth M, Svatoš A, Sachse S, Knaden M, Hansson B S. 2020. Alcohol boosts pheromone production in male flies and makes them sexier. bioRxiv, doi:10.1101/2020.08.09.242784.
Khashaveh A, An X, Shan S, Xiao Y, Wang Q, Wang S, Li Z, Geng T, Gu S, Zhang Y. 2020. Deorphanization of an odorant receptor revealed new bioactive components for green mirid bug Apolygus lucorum (Hemiptera: Miridae). Pest Management Science, 76, 1626–1638.
Kreher S A, Kwon J Y, Carlson J R. 2005. The molecular basis of odor coding in the Drosophila larva. Neuron, 46, 445–456.
Kreher S A, Mathew D, Kim J, Carlson J R. 2008. Translation of sensory input into behavioral output via an olfactory system. Neuron, 59, 110–124.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Kurtovic A, Widmer A, Dickson B J. 2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature, 446, 542–546.
Leal W S. 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391.
Legeai F, Shigenobu S, Gauthier J P, Colbourne J, Rispe C, Collin O, Richards S, Wilson A C, Murphy T, Tagu D. 2010. AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome. Insect Molecular Biology, 19, 5–12.
Li B, Bickel R D, Parker B J, Saleh Ziabari O, Liu F, Vellichirammal N N, Simon J C, Stern D L, Brisson J A. 2020. A large genomic insertion containing a duplicated follistatin gene is linked to the pea aphid male wing dimorphism. Elife, 9, e50608.
Li Y, Park H, Smith T E, Moran N A. 2019. Gene family evolution in the pea aphid based on chromosome-level genome assembly. Molecular Biology and Evolution, 36, 2143–2156.
Lin C C, Prokop-Prigge K A, Preti G, Potter C J. 2015. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. Elife, 4, e08688.
Liu Y, Cui Z, Wang G, Zhou Q, Liu Y. 2020. Cloning and functional characterization of three odorant receptors from the chinese citrus fly Bactrocera minax (Diptera: Tephritidae). Frontiers in Physiology, 11, 246.
Liu Y, Liu C, Lin K, Wang G. 2013. Functional specificity of sex pheromone receptors in the cotton bollworm Helicoverpa armigera. PLoS ONE, 8, e62094.
Manzano-Mari N A, Coeur d’acier A, Clamens A L, Orvain C, Cruaud C, Barbe V, Jousselin E. 2020. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. The ISME Journal, 14, 259–273.
Mathers T C, Chen Y, Kaithakottil G, Legeai F, Mugford S T, Baa-Puyoulet P, Bretaudeau A, Clavijo B, Colella S, Collin O, Dalmay T, Derrien T, Feng H, Gabaldon T, Jordan A, Julca I, Kettles G J, Kowitwanich K, Lavenier D, Lenzi P, et al. 2017. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biology, 18, 27.
McBride C S, Arguello J R, O’Meara B C. 2007. Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics, 177, 1395–1416.
Moran N A, Jarvik T. 2010. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science, 328, 624–627.
Moreno A, Garzo E, Fernandez-Mata G, Kassem M, Aranda M A, Fereres A. 2011. Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis et Applicata, 139, 145–153.
de Oliveira R S, Penaflor M, Goncalves F G, Sampaio M V, Korndorfer A P, Silva W D, Bento J M S. 2020. Silicon-induced changes in plant volatiles reduce attractiveness of wheat to the bird cherry-oat aphid Rhopalosiphum padi and attract the parasitoid Lysiphlebus testaceipes. PLoS ONE, 15, e0231005.
Pan H, Yang X, Romeis J, Siegfried B D, Zhou X. 2020. Dietary RNAi toxicity assay exhibits differential responses to ingested dsRNAs among lady beetles. Pest Management Science, 76, 3606–3614.
Pareja M, Mohib A, Birkett M A, Dufour S, Glinwood R T. 2009. Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Animal Behaviour, 77, 901–909.
Ragsdale D W, Voegtlin D J, O’Neil R J. 2004. Soybean aphid biology in North America. Annals of the Entomological Society of America, 97, 204–208.
Ray S, Helms A M, Matulis N L, Davidson-Lowe E, Grisales W, Ali J G. 2020. Asymmetry in herbivore effector responses: Caterpillar frass effectors reduce performance of a subsequent herbivore. Journal of Chemistry Ecology, 46, 76–83.
Robertson H M. 2019. Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology, 64, 227–242.
Robertson H M, Robertson E C N, Walden K K O, Enders L S, Miller N J. 2019. The chemoreceptors and odorant binding proteins of the soybean and pea aphids. Insect Biochemistry and Molecular Biology, 105, 69–78.
Schwartzberg E G, Boroczky K, Tumlinson J H. 2011. Pea aphids, Acyrthosiphon pisum, suppress induced plant volatiles in broad bean, Vicia faba. Journal of Chemistry Ecology, 37, 1055–1062.
Shang F, Niu J, Ding B Y, Zhang W, Wei D D, Wei D, Jiang H B, Wang J J. 2020. The miR-9b microRNA mediates dimorphism and development of wing in aphids. Proceedings of the National Academy of Sciences of the United States of America, 117, 8404–8409.
Smadja C, Shi P, Butlin R K, Robertson H M. 2009. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Molecular Biology and Evolution, 26, 2073–2086.
Smadja C M, Canback B, Vitalis R, Gautier M, Ferrari J, Zhou J J, Butlin R K. 2012. Large-scale candidate gene scan reveals the role of chemoreceptor genes in host plant specialization and speciation in the pea aphid. Evolution, 66, 2723–2738.
Sobhy I S, Woodcock C M, Powers S J, Caulfield J C, Pickett J A, Birkett M A. 2017. cis-Jasmone elicits aphid-induced stress signalling in potatoes. Journal of Chemistry and Ecology, 43, 39–52.
Suh E, Bohbot J, Zwiebel L J. 2014. Peripheral olfactory signaling in insects. Current Opinion in Insect Science, 6, 86–92.
Tsitoura P, Andronopoulou E, Tsikou D, Agalou A, Papakonstantinou M P, Kotzia G A, Labropoulou V, Swevers L, Georgoussi Z, Iatrou K. 2010. Expression and membrane topology of Anopheles gambiae odorant receptors in Lepidopteran insect cells. PLoS ONE, 5, e15428.
Vandermoten S, Mescher M C, Francis F, Haubruge E, Verheggen F J. 2012. Aphid alarm pheromone: An overview of current knowledge on biosynthesis and functions. Insect Biochemistry and Molecular Biology, 42, 155–163.
Wada-Katsumata A, Robertson H M, Silverman J, Schal C. 2018. Changes in the peripheral chemosensory system drive adaptive shifts in food preferences in insects. Frontiers in Cellular Neuroscience, 12, 281.
Wang B, Liu Y, He K, Wang G. 2016. Comparison of research methods for functional characterization of insect olfactory receptors. Scientific Reports, 6, 32806.
Wang C, Li G, Miao C, Zhao M, Wang B, Guo X. 2020. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons. Pest Management Science, 76, 3159–3167.
Wang G, Vasquez G M, Schal C, Zwiebel L J, Gould F. 2011. Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Molecular Biology, 20, 125–133.
Wang Q, Zhou J J, Liu J T, Huang G Z, Xu W Y, Zhang Q, Chen J L, Zhang Y J, Li X C, Gu S H. 2019. Integrative transcriptomic and genomic analysis of odorant binding proteins and chemosensory proteins in aphids. Insect Molecular Biology, 28, 1–22.
Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett J. 2008. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. Journal of Chemistry Ecology, 34, 1153–1161.
Wicher D, Schafer R, Bauernfeind R, Stensmyr M C, Heller R, Heinemann S H, Hansson B S. 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature, 452, 1007–1011.
Yang C, Pan H, Liu Y, Zhou X. 2014. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera, Aphidiae). PLoS ONE, 9, e110454.
Zhang R B, Liu Y, Yan S C, Wang G R. 2019. Identification and functional characterization of an odorant receptor in pea aphid, Acyrthosiphon pisum. Insect Science, 26, 58–67.
Zhang R B, Wang B, Grossi G, Falabella P, Liu Y, Yan S, Lu J, Xi J, Wang G. 2017. Molecular basis of alarm pheromone detection in aphids. Current Biology, 27, 55–61.
                         
[1] ZHANG Yu, YANG Bin, YU Jie, PANG Bao-ping, WANG Gui-rong. Expression profiles and functional prediction of ionotropic receptors in Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2022, 21(2): 474-485.
No Suggested Reading articles found!