Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3103-3113    DOI: 10.1016/j.jia.2022.07.059
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice
YU Xiao-qi*, XIE Wei*, LIU He, LIU Wei, ZENG Da-li, QIAN Qian, REN De-yong
State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  叶片是植物的主要光合作用器官,最佳的叶片形态有利于塑造理想株型,提高光合效率。在超高产杂交水稻模型中,袁隆平先生将水稻功能叶的形状归纳为直立、狭窄、厚实、卷曲。叶片的适度卷曲有助于其保持直立,减少阳光对叶片的辐射,并降低对叶片的损害,提高植物抵抗力,增加光合产物积累,从而提高作物产量。该研究发现srl3突变体在整个生育期都表现出半卷叶的表型,在分蘖期,其剑叶、第二叶、第三叶的叶片卷曲指数分别平均达到了41%、26%、14%。组织形态学分析发现srl3的剑叶在近轴面上位于中脉、大维管束及小维管束之间的泡状细胞数目和面积均显著性降低。石蜡切片和扫描电镜观察均发现部分小维管束对应的叶片背面缺少厚壁细胞,这些可能都是导致srl3半卷叶表型的原因。另外,我们还检测了一些卷叶相关以及细胞增殖扩展相关基因的表达水平,发现其中大部分基因的表达量都发生了显著性改变,说明SRL3基因很可能与这些卷叶及细胞增殖扩展相关基因有关,共同影响及调控水稻叶片形态。

Abstract  

Moderate leaf rolling can maintain leaf erectness, improve light transmittance in the population, and improve light energy utilization, thereby increasing rice yield.  This study used ethyl methanesulfonate (EMS) to treat Yunjing 17 (YJ17) and obtained a semi-rolled leaf mutant that was named semi-rolled leaf 3 (srl3).  We found that the rolled-leaf phenotype was due to the aberrant development of bulliform cells and the loss of sclerenchymatous cells.  In addition, the shoot and root length of srl3 seedlings differed from the wild type.  The srl3 mutant had significantly lower plant height and seed-setting rate but notably greater tiller number, panicle length, and primary branch number per panicle than the wild type.   Genetic analysis showed that a single recessive nuclear gene defined the srl3 mutant, and it was precisely located in a 144-kb region between two insertion-deletion (InDel) markers, M8 and M19, on chromosome 2.  In this region, no leaf-rolling-related genes have been reported previously.  Thus, the study indicated that SRL3 is a novel leaf-rolling-related gene, and the results laid the foundation for the cloning and functional analysis of the SRL3 gene.

Keywords:  rice        srl3        semi-rolled leaf        bulliform cell        sclerenchymatous cell  
Received: 26 May 2021   Accepted: 06 August 2021
Fund: This work was supported by the National Natural Science Foundation of China (32071993 and 91735304).
About author:  Correspondence QIAN Qian, E-mail: qianqian188@hotmail.com; REN De-yong, E-mail: rendeyong616@163.com * These authors contributed equally to this study.

Cite this article: 

YU Xiao-qi, XIE Wei, LIU He, LIU Wei, ZENG Da-li, QIAN Qian, REN De-yong. 2022. Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice. Journal of Integrative Agriculture, 21(11): 3103-3113.

Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C H, Wang J, Zhang J L, Zhang G Q, Zhang Z M. 2015. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. Journal of Experimental Botany, 66, 6047–6058.
Dai M Q, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X. 2007. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiology, 144, 121–133.
Ding X H, Cao Y L, Huang L L, Zhao J, Xu C G, Li X H, Wang S P. 2008. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. The Plant Cell, 20, 228–240.
Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. 2012. Rolling-leaf 14 is a 2OG-Fe(II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnology Journal, 10, 524–532.
Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. 2008. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 279, 499–507.
Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. 2009. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Developmental Biology, 334, 345–354.
Hong Z, Ueguchi M, Shimizu S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M. 2002. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant Journal, 32, 495–508.
Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. 2010. Over expression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Molecular Plant, 3, 807–817.
Li L, Xue X, Zuo S M, Chen Z X, Zhang Y F, Li Q Q, Zhu J K, Ma Y Y, Pan X B, Pan C H. 2013. Suppressed expressed of AGO1a leads to adaxial leaf rolling in rice. Chinese Journal of Rice Science, 27, 223–230. (in Chinese)
Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. 2016. Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. Journal of Experimental Botany, 67, 2139–2150.
Mao C J, He J M, Liu L N, Deng Q M, Yao X F, Liu C M, Qiao Y L, Li P, Ming F. 2020. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnology Journal, 18, 429–442.
O’Toole J C, Cruz R T. 1980. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiology, 65, 428–432.
Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. 2020. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytologist, 227, 629–640.
Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. 2007. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 226, 99–108.
Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616–627.
Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J N, Souer E, Koes R. 2002. FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Development, 16, 753–763.
Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y. 2011. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. The Plant Cell, 23, 3392–3411.
Xiang J J, Zhang G H, Qian Q, Xue H W. 2012. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiology, 159, 1488–1500.
Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. 2014. Over expression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 239, 803–816.
Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology, 143, 1362–1371.
Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. 2016. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 9, 37.
Yu X Q, Xia S S, Xu Q K, Cui Y J, Gong M, Zeng D L, Zhang Q, Shen L, Jiao G A, Gao Z Y, Hu J, Zhang G H, Zhu L, Guo L B, Ren D Y, Qian Q. 2020. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China (Life Sciences), 63, 228–238.
Yuan L P. 1997. Super-high yield hybrid rice breeding. Hybrid Rice, 12, 1–6. (in Chinese)
Zhang G H, Hou X, Wang L, Xu J, Chen J, Fu X, Shen N W, Nian J Q, Jiang Z Z, Hu J, Zhu L, Rao Y C, Shi Y F, Ren D Y, Dong G J, Gao Z Y, Guo L B, Qian Q, Luan S. 2021. PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytologist, 229, 890–901.
Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. 2009. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. The Plant Cell, 21, 719–735.
Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. 2010. Rice leaf inclination 2, a VIN3-1ike protein, regulates leaf angle through modulating cell division of collar. Cell Research, 20, 935–947.
Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 291, 306–309.
Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. 2011. Leaf rolling controlled by the homeodomainleucinezipper class IV gene Roc5 in rice. Plant Physiology, 156, 1589–1602.
Zou L P, Zhang Z G, Qi D F, Peng M, Lu T G. 2014. Cytological mechanisms of leaf rolling in rice. Crop Science, 54, 198–209.

[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[5] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[8] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[9] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[10] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[11] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[12] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[13] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[14] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[15] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
No Suggested Reading articles found!