Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (02): 497-502    DOI: 10.1016/S2095-3119(16)61470-3
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
Fine mapping of a novel wax crystal-sparse leaf3 gene in rice
GONG Hong-bing1, 2*, ZENG Sheng-yuan2*, XUE Xiang1, ZHANG Ya-fang1, CHEN Zong-xiang1,  ZUO Shi-min1, LI Chuang2, LIN Tian-zi2, JING De-dao2, YU Bo2, QIAN Hua-fei2, PAN Xue-biao1,  SHENG Sheng-lan2

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics, Ministry of Education/Agricultural College, Yangzhou University, Yangzhou 225009, P.R.China

2 Zhenjiang Agricultural Research Institute, Jurong 212400, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Cuticular wax plays an important role in protecting plants against water loss and pathogen infection and in the adaptations to environmental stresses.  The genetic mechanism of the biosynthesis and accumulation of epicuticular wax in rice remains largely unknown.  Here, we show a spontaneous mutant displaying wax crystal-sparse leaves and decreased content of epicuticular wax that was derived from the cytoplasmic male sterility (CMS) restorer line Zhenhui 714.  Compared with the wild type Zhenhui 714, the mutant exhibited hydrophilic features on leaf surface and more sensitivity to drought stress.  The mutation also caused lower grain number per panicle and thousand grain weight, leading to the decline of yield.  Genetic analysis indicates that the mutation is controlled by a single recessive gene, named wax crystal-sparse leaf3 (wsl3).  Using segregation populations derived from crosses of mutant/Zhendao 88 and mutant/Wuyujing 3, respectively, the wsl3 gene was fine-mapped to a 110-kb region between markers c3-16 and c3-22 on chromosome 3.  According to the rice reference genome and gene analysis, we conclude that a novel gene/mechanism involved in regulation of rice cuticular wax formation.
Keywords:  rice      cuticular wax      wax crystal-sparse      fine mapping  
Received: 07 March 2016   Accepted:
Fund: 

This research was supported by grants from Jiangsu Province Self-innovation Program, China (CX (13)5073), the Natural Science Foundation of Jiangsu Province of China (BK20141291) and the Jiangsu 333 Program, China (BRA2014170).

Corresponding Authors:  PAN Xue-biao, Tel: +86-514-87972136, E-mail: shuidao@yzu.edu.cn   
About author:  GONG Hong-bing, E-mail: hongbinggong973@sina.com

Cite this article: 

GONG Hong-bing, ZENG Sheng-yuan, XUE Xiang, ZHANG Ya-fang, CHEN Zong-xiang, ZUO Shi-min, LI Chuang, LIN Tian-zi, JING De-dao, YU Bo, QIAN Hua-fei, PAN Xue-biao, SHENG Sheng-lan . 2017. Fine mapping of a novel wax crystal-sparse leaf3 gene in rice. Journal of Integrative Agriculture, 16(02): 497-502.

Islam M A, Du H, Ning J, Ye H Y, Xiong L Z. 2009. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Molecular Biology, 70, 443–456.
Javelle M, Vernoud V, Rogowsky P M, Ingram G C. 2011. Epidermis: The formation and functions of a fundamental plant tissue. New Phytologist, 189, 17–39.
Jenks M A R P, Peters P J, Axtell J D, Ashworth E N. 1992. Epicuticular wax morphology of bloomless (bm) mutants in Sorghum bicolor. International Journal of Plant Sciences, 153, 9.
Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W, Hwang I, An G. 2006. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. The Plant Cell, 18, 3015–3032.
Kunst L, Samuels L, Friml J, Schumacher K. 2009. Plant cuticles shine: advances in wax biosynthesis and export. Current Opinion in Plant Biology, 12, 721–727.
Lee S B, Suh M C. 2013. Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Molecular Plant, 6, 246–249.
Mao B G, Cheng Z J, Lei C L, Xu F H, Gao S W, Ren Y L, Wang J L, Zhang X, Wang J, Wu F Q, Guo X P, Liu X L, Wu C Y, Wang H Y, Wan J M. 2012. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta, 235, 39–52.
McCouch S, Kochert G, Yu Z, Wang Z, Khush G, Coffman W, Tanksley S. 1988. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics, 76, 815–829.
Michelmore R W, Paran I, Kesseli R. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.
Qin B X, Tang D, Huang J, Li M, Wu X R, Lu L L, Wang K J, Yu H X, Chen J M, Gu M H. 2011. Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Molecular Plant, 4, 985–995.
Raffaele S, Leger A, Roby D. 2009. Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signal Behavior, 4, 94–99.
Wang Y H, Wan L Y, Zhang L X, Zhang Z J, Zhang H W, Quan R D, Zhou S R, Huang R F. 2012. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Molecular Biology, 78, 275–288.
Yan C J, Yan S, Yang Y C, Zeng X H, Fang Y W, Zeng S Y, Tian C Y, Sun Y W, Tang S Z, Gu M H. 2009. Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica, 169, 215–226.
Yeats T H, Rose J K C. 2013. The formation and function of plant cuticles. Plant Physiology, 163, 5–20.
Yoshimura A, Ideta O, Iwata N. 1997. Linkage map of phenotype and RFLP markers in rice. Plant Molecular Biology, 35, 49–60.
Yu D M, Ranathunge K, Huang H S, Pei Z Y, Franke R, Schreiber L, He C Z. 2008. Wax Crystal-Sparse Leaf1 encodes a β-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta, 228, 675–685.
Zhou L Y, Ni E D, Yang J W, Zhou H, Liang H, Li J, Jiang D G, Wang Z H, Liu Z L, Zhuang C X. 2013. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLOS ONE, 8, e65139.
Zhou X Y, Chen X B, Xu X L, Liu A L, Zou J, Gao G F. 2007. On comparison of extraction methods of epicuticular wax and content of rice leaves. Journal of Hunan Agricultural University (Natural Sciences), 3, 4. (in Chinese)
Zhou X Y, Li L Z, Xiang J H, Gao G F, Xu F X, Liu A L, Zhang X W, Peng Y, Chen X B, Wang X Y. 2015. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLOS ONE, 10, e116676.
Zhu X, Xiong L.2013. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proceedings of the National Academy of Sciences of the United States of America, 110, 17790–17795.
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[6] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[7] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[8] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[9] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[10] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[11] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[12] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[13] Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1195-1204.

[14] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[15] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

No Suggested Reading articles found!