Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 694-708    DOI: 10.1016/j.jia.2025.04.017
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
ScD27.2 gene regulation mechanism during sugarcane tillering and growth

Zhuandi Wu1, 2, Xin Hu1, 2, Wenzhi Wang3, Zhengying Luo1, 2, Naveed ur Rehman1, 2, Peifang Zhao1, 2, Jiayong Liu1, 2, Shuzhen Zhang3, Fenggang Zan1, 2#, Xinlong Liu1, 2#, Jiawen Guo1, 2#

1 National Key Laboratory for Biological Breeding of Tropical Crops of Ministry of Science and Technology, Kunming 650205, China

2 Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China

3 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

 Highlights 
ScD27.2 bidirectionally regulates sugarcane tillering: RNA interference of ScD27.2 results in increased tillering whereas overexpression leads to reduced tillering, demonstrating the negative regulatory role of ScD27.2 in tillering and establishing it as a potential target for plant architecture modification.
Under drought stress, ScD27-RNAi lines exhibit a dwarf, multi-tillering phenotype, accompanied by a marked decrease in strigolactones (SLs) content and compromised yield.  This indicates that ScD27.2 modulates the balance between tillering and stress resistance by regulating SL biosynthesis.
The presence of abiotic stress-responsive elements in the ScD27.2 promoter, along with its regulation by the transcription factor ScMYB44, reveals part of the molecular network coordinating tillering and drought response.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

分蘖数是决定甘蔗(Saccharum spp. hybrids)产量的关键农艺性状。独脚金内酯(Strigolactones, SLs)作为植物激素,对株型建成具有重要调控作用。DWARF27D27)是SL生物合成途径中的关键酶,可催化类胡萝卜素的可逆异构化反应。甘蔗D27同源基因ScD27.2的启动子区含有非生物胁迫响应元件,提示其在SL生物合成与胁迫应答中具有重要作用,可能通过调控分蘖数等性状影响甘蔗产量。阐明其调控机制将为培育高产、抗逆甘蔗新品种提供理论依据。本研究通过RNA干扰(RNAi)和过表达(OE)技术对甘蔗品种新台糖22号(XTT22)中关键胡萝卜素异构酶基因ScD27.2进行遗传调控。结果显示:与野生型相比,ScD27-RNAi-2株系的ScD27.2表达量显著降低,分蘖数显著增加;而ScD27-OE-1ScD27-OE-5ScD27-OE-9株系的基因表达量显著升高,分蘖数显著减少。其中ScD27-OE-9株系侧芽萌发明显受抑,而ScD27-RNAi-2株系耐旱性显著降低。在正常光温水管理条件下,转基因植株的分蘖数和株高均呈现显著差异。长期干旱胁迫下,ScD27-RNAi-2株系的株高显著低于野生型和ScD27-OE-9株系,呈现矮化多蘖表型。进一步检测发现ScD27-RNAi-2株系的SLs含量显著下降。本研究推测ScD27.2通过调控甘蔗分蘖数响应干旱胁迫,且干旱相关转录因子ScMYB44可能参与ScD27.2对干旱胁迫的应答过程。



Abstract  

Tiller number represents a critical agronomic trait determining sugarcane yield.  Strigolactones (SLs) are plant hormones regulating plant architecture.  D27, an essential enzyme in the SL biosynthetic pathway, catalyzes a reversible isomerization reaction.  ScD27.2, the D27 homolog in sugarcane, contains abiotic stress-responsive elements in its promoter, suggesting its potential importance in SL biosynthesis and stress tolerance.  ScD27.2 potentially optimizes sugarcane agronomic traits, particularly tiller number and yield.  Understanding its mechanisms will advance the development of high-yielding, stress-tolerant sugarcane varieties.  To investigate the role of D27 in sugarcane tillering, the key carotene isomerase gene ScD27.2 was silenced (via RNAi) and overexpressed (OE) in sugarcane cultivar ‘XTT22’ plantlets.  ScD27-RNAi-2 sugarcane exhibited decreased ScD27.2 expression and increased tiller numbers compared to the wild type ‘XTT22’.  Conversely, overexpression lines (ScD27-OE-1, ScD27-OE-5, and ScD27-OE-9) showed increased ScD27.2 expression and decreased tiller numbers.  ScD27-OE-9 demonstrated notable lateral bud germination, while ScD27-RNAi-2 exhibited reduced drought tolerance.  Under normal light and water management conditions, transgenic sugarcane plants showed significant differences in tiller number and plant height.  During extended drought conditions, ScD27-RNAi-2 height was significantly reduced compared to wild type ‘XTT22’ and ScD27-OE-9, manifesting a dwarf, multi-tiller phenotype.  Additionally, ScD27-RNAi-2 showed significantly reduced SLs content.  These findings demonstrate that ScD27.2 regulates tillering under drought stress, likely through SL biosynthesis, and that its drought response may be mediated by the transcription factor ScMYB44.


Keywords:  DWARF27       carotene isomerase       drought stress response       strigolactone biosynthesis       tillering  
Received: 31 October 2024   Accepted: 18 March 2025 Online: 18 April 2025  
Fund: 

This project was funded by the National Natural Science Foundation of China (31860405); the National Key Laboratory for Tropical Crop Breeding, China (NKLTCB-YAAS-2024-S05); the Yunnan Provincial Modern Agricultural Technology System, China; the Yunnan Provincial Science and Technology Innovation Talent Program, China (202305AD160041); the Yunnan Provincial “Xingdian Talent Support Program”, China; the Yunnan Haizhi Station for Sugarcane Research Institute of Yunnan Academy of Agricultural Sciences, China (HHZ202201); and the Yunnan Provincial Key Research and Development Program, China (202403AM140025).  

About author:  Zhuandi Wu, E-mail: judith1123@126.com; #Correspondence Fenggang Zan, E-mail: fengang88@126.com; Xinlong Liu, E-mail: lxlgood868@163.com; Jiawen Guo, E-mail: 79jwguo@163.com

Cite this article: 

Zhuandi Wu, Xin Hu, Wenzhi Wang, Zhengying Luo, Naveed ur Rehman, Peifang Zhao, Jiayong Liu, Shuzhen Zhang, Fenggang Zan, Xinlong Liu, Jiawen Guo. 2026. ScD27.2 gene regulation mechanism during sugarcane tillering and growth. Journal of Integrative Agriculture, 25(2): 694-708.

de Abreu L G F, Grassi M C B, de Carvalho L M, Da Silva J J B, Oliveira J V C, Bressiani J A, Pereira G A G. 2020. Energy cane vs sugarcane: Watching the race in plant development. Industrial Crops and Products156, 112868.

Abuauf H, Haider I, Jia K P, Ablazov A, Mi J, Blilou I, Al-Babili S. 2018. The Arabidopsis DWARF27 gene encodes an all-trans-/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Science277, 33–42.

Aitken K S, Hermann S, Karno K, Bonnett G D, Mcintyre L C, Jackson P A. 2008. Genetic control of yield related stalk traits in sugarcane. Theoretical and Applied Genetics117, 1191–1203.

Al-Babili S, Bouwmeester H J. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology66, 161–186.

Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The path from β-Carotene to carlactone, a strigolactone-like plant hormone. Science335, 1348–1351.

Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research25, 3389–3402.

Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester H J, Lopez-Raez J A. 2015. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant–microbe interactions below-ground. Plant and Soil394, 1–19.

Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant Journal51, 1019–1029.

Aroca R, Ruiz-Lozano J M, Zamarreño Á M, Paz J A, García-Mina J M, Pozo M J, López-Ráez J A. 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology170, 47–55.

Bari V K, Nassar J A, Aly R. 2021. CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiacaScientific Reports11, 3905.

Batra R, Agarwal P, Tyagi S, Saini D K, Kumar V, Kumar A, Kumar S, Balyan H S, Pandey R, Gupta P K. 2019. A study of CCD8 genes/proteins in seven monocots and eight dicots. PLoS ONE14, e0213531.

Bharti N, Tripathi S, Bhatla S C. 2015. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth. Plant Signaling & Behavior10, e1049792.

Bohorova N, Zhang W, Julstrom P, Mclean S, Luna B, Brito R M, Diaz L, Ramos M E, Estanol P, Pacheco M, Salgado M, Hoisington D. 1999. Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theoretical and Applied Genetics99, 437–444.

Bonneau L, Huguet S, Wipf D, Pauly N, Truong H N. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatulaNew Phytologist199, 188–202.

Brewer P B, Koltai H, Beveridge C A. 2013. Diverse roles of strigolactones in plant development. Molecular Plant6, 18–28.

Bruno M, Al-Babili S. 2016. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta243, 1429–1440.

Cao X, Liu Q, Rowland L J, Hammerschlag F A. 1998. GUS expression in blueberry (Vaccinium spp.): Factors influencing Agrobacterium-mediated gene transfer efficiency. Plant Cell Reports18, 266–270.

Cheng X, Flokova K, Bouwmeester H, Ruyter-Spira C. 2017. The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed Phelipanche ramosa in tomato plants. Frontiers in Plant Science8, 392.

Cheng X, Ruyter-Spira C, Bouwmeester H. 2013. The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science4, 199.

Cooper J W, Hu Y, Beyyoudh L, Yildiz D H, Kunert K, Beveridge C A, Foyer C H. 2018. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell and Environment41, 1298–1310.

Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Muller D, Domagalska M A, Leyser O. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development137, 2905–2913.

Czarnecki O, Yang J, Wang X, Wang S, Muchero W, Tuskan G A, Chen J G. 2014. Characterization of MORE AXILLARY GROWTH genes in populus. PLoS ONE9, e102757.

Czarnecki O, Yang J, Weston D J, Tuskan G A, Chen J G. 2013. A dual role of strigolactones in phosphate acquisition and utilization in plants. International Journal of Molecular Sciences14, 7681–7701.

Delaux P M, Xie X, Timme R E, Puech-Pages V, Dunand C, Lecompte E, Delwiche C F, Yoneyama K, Becard G, Sejalon-Delmas N. 2012. Origin of strigolactones in the green lineage. New Phytologist195, 857–871.

Dias H B, Sentelhas P C. 2018. Sugarcane yield gap analysis in Brazil - A multi-model approach for determining magnitudes and causes. Science of the Total Environment637–638, 1127–1136.

Dierck R, De Keyser E, De Riek J, Dhooghe E, Van Huylenbroeck J, Prinsen E, Van Der Straeten D. 2016. Change in auxin and cytokinin levels coincides with altered expression of branching genes during axillary bud outgrowth in ChrysanthemumPLoS ONE11, e0161732.

Dun E A, Hanan J, Beveridge C A. 2009. Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea. Plant Cell21, 3459–3472.

Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge C A. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell17, 464–474.

Foo E, Yoneyama K, Hugill C J, Quittenden L J, Reid J B. 2013. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant6, 76–87.

Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North H M, Marion-Poll A. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant Journal70, 501–512.

Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J, Letisse F, Matusova R, Danoun S, Portais J, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. 2008. Strigolactone inhibition of shoot branching. Nature455, 189–194.

Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America111, 851–856.

Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Flokova K, Abuauf H, Ntui V O, Guo X, Charnikhova T, Al-Babili S, Bouwmeester H J, Ruyter-Spira C. 2018. The interaction of strigolactones with abscisic acid during the drought response in rice. Journal of Experimental Botany69, 2403–2414.

Hauser R, Pech M, Kijek J, Yamamoto H, Titz B, Naeve F, Tovchigrechko A, Yamamoto K, Szaflarski W, Takeuchi N, Stellberger T, Diefenbacher M E, Nierhaus K H, Uetz P. 2012. RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genetics8, e1002815.

Hemaprabha G, Mohanraj K, Jackson P A, Lakshmanan P, Ali G S, Li A M, Huang D L, Ram B. 2022. Sugarcane genetic diversity and major germplasm collections. Sugar Tech24, 279–297.

Hirayama T, Shinozaki K. 2007. Perception and transduction of abscisic acid signals: Keys to the function of the versatile plant hormone ABA. Trends in Plant Science12, 343–351.

Iyer-Pascuzzi A S, Jackson T, Cui H, Petricka J J, Busch W, Tsukagoshi H, Benfey P N. 2011. Cell identity regulators link development and stress responses in the Arabidopsis root. Developmental Cell21, 770–782.

Jia K P, Luo Q, He S B, Lu X D, Yang H Q. 2014. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in ArabidopsisMolecular Plant7, 528–540.

Johnson X, Brcich T, Dun E A, Goussot M, Haurogne K, Beveridge C A, Rameau C. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiology142, 1014–1026.

Kandel R, Yang X, Song J, Wang J. 2018. Potentials, challenges, and genetic and genomic resources for sugarcane biomass improvement. Frontiers in Plant Science9, 151.

Kapulnik Y, Koltai H. 2014. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiology166, 560–569.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution30, 772–780.

Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V, Dor B B, Resnick N, Wininger S, Kapulnik Y. 2011. Light is a positive regulator of strigolactone levels in tomato roots. Journal of Plant Physiology168, 1993–1996.

Krishna R S, Finlayson S A. 2014. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling. Plant Physiology164, 1542–1550.

Li J, Zhao S, Yu X, Du W, Li H, Sun Y, Sun H, Ruan C. 2021. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiology and Biochemistry162, 410–420.

Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell21, 1512–1525.

Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester H J, Lovisolo C, Cardinale F. 2015. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress. Planta241, 1435–1451.

Liu W, Kohlen W, Lillo A, Op D C R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W C, Hooiveld G J, Charnikhova T, Bouwmeester H J, Bisseling T, Geurts R. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell23, 3853–3865.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Lofton J, Tubana B S, Kanke Y, Teboh J, Viator H, Dalen M. 2012. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors12, 7529–7547.

Lopez-Raez J A, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist178, 863–874.

Lucido A, Basallo O, Sorribas A, Marin-Sanguino A, Vilaprinyo E, Alves R. 2022. A mathematical model for strigolactone biosynthesis in plants. Frontiers in Plant Science13, 979162.

Mach J. 2015. Strigolactones regulate plant growth in arabidopsis via degradation of the DWARF53-like proteins SMXL6, 7, and 8. Plant Cell27, 3022–3023.

Marzec M. 2017. Strigolactones and gibberellins: A new couple in the phytohormone world? Trends in Plant Science22, 813–815.

Marzec M, Muszynska A. 2015. In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. International Journal of Molecular Sciences16, 6757–6782.

Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer P B, Beveridge C A, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H. 2012. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiology160, 1329–1341.

Mayzlish-Gati E, Lekkala S P, Resnick N, Wininger S, Bhattacharya C, Lemcoff J H, Kapulnik Y, Koltai H. 2010. Strigolactones are positive regulators of light-harvesting genes in tomato. Journal of Experimental Botany61, 3129–3136.

Meena M R, Appunu C, Arun K R, Manimekalai R, Vasantha S, Krishnappa G, Kumar R, Pandey S K, Hemaprabha G. 2022. Recent advances in sugarcane genomics, physiology, and phenomics for superior agronomic traits. Frontiers in Genetics13, 854936.

Mostofa M G, Li W, Nguyen K H, Fujita M, Tran L P. 2018. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant Cell and Environment41, 2227–2243.

Murashige T, Skoog F. 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum1, 473–497.

Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X. 2018. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Reports37, 1049–1060.

Omoarelojie L O, Kulkarni M G, Finnie J F, Van Staden J. 2019. Strigolactones and their crosstalk with other phytohormones. Annals of Botany124, 749.

Pan X, Zheng H, Zhao J, Xu Y, Li X. 2016. ZmCCD7/ZpCCD7 encodes a carotenoid cleavage dioxygenase mediating shoot branching. Planta243, 1407–1418.

Pandey A, Sharma M, Pandey G K. 2016. Emerging Roles of strigolactones in plant responses to stress and development. Frontiers in Plant Science7, 434.

Pena J T, Sohn-Lee C, Rouhanifard S H, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berninger P, Zavolan M, Tuschl T. 2009. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nature Methods6, 139–141.

Persak H, Pitzschke A. 2014. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. International Journal of Molecular Sciences15, 2517–2537.

Raja V, Qadir S U, Kumar N, Alsahli A A, Rinklebe J, Ahmad P. 2023. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiology and Biochemistry201, 107872.

Rasmussen A, Depuydt S, Goormachtig S, Geelen D. 2013. Strigolactones fine-tune the root system. Planta238, 615–626.

Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester H J, Visser R G, Bachem C W. 2012. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany63, 4539–4547.

Ruiz-Lozano J M, Aroca R, Zamarreño Á M, Molina S, Andreo-Jiménez B, Porcel R, García-Mina J M, Ruyter-Spira C, López-Ráez J A. 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. PlantCell & Environment39, 441–452.

Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends in Plant Science18, 72–83.

Saeed W, Naseem S, Ali Z. 2017. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: A critical review. Frontiers in Plant Science8, 1487.

Shindo M, Shimomura K, Yamaguchi S, Umehara M. 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct2, e00050.

De Smet I, Signora L, Beeckman T, Inze D, Foyer C H, Zhang H. 2003. An abscisic acid-sensitive checkpoint in lateral root development of ArabidopsisPlant Journal33, 543–555.

Stirnberg P, Zhao S, Williamson L, Ward S, Leyser O. 2012. FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant Journal71, 907–920.

Sun D, Guo T, Ran Y, Huang Y, Guan B O. 2014. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosensors & Bioelectronics61, 541–546.

Tariq A, Ullah I, Sardans J, Graciano C, Mussarat S, Ullah A, Zeng F, Wang W, Al-Bakre D A, Ahmed Z, Ali S, Zhang Z, Yaseen A, Peñuelas J. 2023. Strigolactones can be a potential tool to fight environmental stresses in arid lands. Environmental Research229, 115966.

Thussagunpanit J, Nagai Y, Nagae M, Mashiguchi K, Mitsuda N, Ohme-Takagi M, Nakano T, Nakamura H, Asami T. 2017. Involvement of STH7 in light-adapted development in Arabidopsis thaliana promoted by both strigolactone and karrikin. Bioscience Biotechnology and Biochemistry81, 292–301.

Tolnai Z, Sharma H, Soos V. 2024. D27-like carotenoid isomerases: At the crossroads of strigolactone and abscisic acid biosynthesis. Journal of Experimental Botany75, 1148–1158.

Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S. 2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant and Cell Physiology51, 1118–1126.

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature455, 195–200.

Wang T, Xu F, Wang Z, Wu Q, Cheng W, Que Y, Xu L. 2023. Mapping of QTLs and screening candidate genes associated with the ability of sugarcane tillering and ratooning. International Journal of Molecular Sciences24, 2793.

Wang W, Gao H, Liang Y, Li J, Wang Y. 2022. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Molecular Plant15, 125–137.

Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences22, 6125.

Ward S P, Salmon J, Hanley S J, Karp A, Leyser O. 2013. Using Arabidopsis to study shoot branching in biomass willow. Plant Physiology162, 800–811.

Waters M T, Brewer P B, Bussell J D, Smith S M, Beveridge C A. 2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology159, 1073–1085.

Wei C Q, Chien C W, Ai L F, Zhao J, Zhang Z, Li K H, Burlingame A L, Sun Y, Wang Z Y. 2016. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics43, 555–563.

Wen C, Xi L, Gao B, Wang K, Lv S, Kou Y, Ma N, Zhao L. 2015. Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Plant Physiology and Biochemistry96, 241–253.

Wen C, Zhao Q, Nie J, Liu G, Shen L, Cheng C, Xi L, Ma N, Zhao L. 2016. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Reports35, 1053–1070.

Wu Z D, Liu X L, Liu J Y, Zan F G, Li X J, Liu H B, Lin X Q, Chen X K, Su H S, Zhao P F, Wu C W. 2017. Cloning and expression analysis of key gene ScD27 in strigolactones biosynthesis pathway. Acta Agronomica Sinica43, 31–41. (in Chinese)

Xi L, Wen C, Fang S, Chen X, Nie J, Chu J, Yuan C, Yan C, Ma N, Zhao L. 2015. Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum (Dendranthema grandiflorum cv. Jinba). Frontiers in Plant Science6, 694.

Yang Y, Abuauf H, Song S, Wang J Y, Alagoz Y, Moreno J C, Mi J, Ablazov A, Jamil M, Ali S, Zheng X, Balakrishna A, Blilou I, Al-Babili S. 2023. The Arabidopsis D27-LIKE1 is a cis/cis/trans-β-carotene isomerase that contributes to Strigolactone biosynthesis and negatively impacts ABA level. Plant Journal113, 986–1003.

Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols2, 1565–1572.

Yuan C, Ahmad S, Cheng T, Wang J, Pan H, Zhao L, Zhang Q. 2018. Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in chrysanthemum (Dendranthema grandiflorum ‘Jinba’). International Journal of Molecular Sciences19, 1590.

Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics50, 1565–1573.

Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L. 2010. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Journal of Integrative Plant Biology52, 626–638.

Zhang X, Zhang L, Ma C, Su M, Wang J, Zheng S, Zhang T. 2022. Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Scientia Horticulturae297, 110962.

Zhou J, Ma L, Zhang S, Zhu Y, Sun D. 2001. Extracellular calmodulin stimulates light-independent RbcS-GUS expression in suspension-cultured cells of transgenic tobacco. Plant and Cell Physiology42, 1049–1055.

Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. 2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant Journal48, 687–698.

[1] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[2] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[3] Asad RIAZ, Ahmad M. ALQUDAH, Farah KANWAL, Klaus PILLEN, YE Ling-zhen, DAI Fei, ZHANG Guo-ping. Advances in studies on the physiological and molecular regulation of barley tillering[J]. >Journal of Integrative Agriculture, 2023, 22(1): 1-13.
[4] Muhammad ISHFAQ, Nadeem AKBAR, shakeel Ahmed ANJUM, Muhammad ANWAR-UL-HAQ. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2656-2673.
No Suggested Reading articles found!