Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Insights into the geranylgeranyl pyrophosphate synthase (GGPPS) gene family in Osmanthus fragrans and the role of OfGGPPS13 in the formation of floral color and aroma

Hanruo Qiu, Qingyin Tian, Guimin Zeng, Chenchen Xie, Xiulian Yang, Lianggui Wang, Yuanzheng Yue#

State Key Laboratory of Tree Genetics and Breeding/Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province/College of Landscape Architecture/College of Forestry and Grassland & Soil and Water Conservation, Nanjing Forestry University, Nanjing 210095, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

桂花以其浓郁的香气而闻名,不同品种的桂花具有不同程度的香味和颜色。香气和颜色是影响桂花观赏品质的重要因素。萜类化合物是植物中重要的次生代谢产物,其中β-胡萝卜素(C40)是桂花中的主要色素物质,芳樟醇(C10)是芳桂花中的关键芳香成分。牻牛儿牻牛儿基焦磷酸合酶基因(GGPPSs)在植物的次生代谢中起重要作用。然而,关于GGPPS家族在桂花花色和香味形成中的功能却鲜有报道。本研究鉴定了分属两个亚家族的24OfGGPPSsOfGGPPSs的表达具有组织特异性,其中OfGGPPS13在花中的表达量最高。OfGGPPS13蛋白定位于叶绿体。通过qRT-PCR验证了在花的不同发育阶段,OfGGPPS13在香气浓郁的‘晚银桂’的表达量高于颜色深沉的‘状元红’,结果与转录组数据一致。OfGGPPS13在花瓣中的瞬时过表达结果表明,OfGGPPS13增加了花瓣中主要着色物质β-胡萝卜素的含量,但降低了花瓣香气中主要VOC芳樟醇的含量。因此我们认为GGPPS13是桂花花香花色形成过程中与萜类化合物合成有关的关键基因。本研究为GGPPS基因家族提供了基因资源,有助于进一步揭示桂花花香花色形成的分子调控机制



Abstract  

Osmanthus fragrans is most famous for its strong aroma, and different varieties have different degrees of fragrance and color. Fragrance and color are important factors affecting the ornamental quality of O. fragrans. Terpenoids are important secondary metabolites in plants, with β-carotene (C40) being the major pigment substance and linalool (C10) being the key aromatic component in O. fragrans. The geranylgeranyl pyrophosphate synthase genes (GGPPSs) play important roles in secondary metabolism in plants. However, the functions of the GGPPS family in floral color and fragrance formation has rarely been reported in O. fragrans. In this study, 24 OfGGPPS genes were identified and classified into two subfamilies. The OfGGPPSs showed tissue-specific expression and OfGGPPS13 had highest expression in flowers. The OfGGPPS13 protein was localized to chloroplasts. The transcriptome data of OfGGPPS13 was verified by qRT-PCR and the expression level in ‘Wanyingui’ with strong aroma was higher than that in ‘Zhuangyuanhong’ with deep color at different flower development stages. Transient overexpression of OfGGPPS13 in O. fragrans petals showed that OfGGPPS13 increased the β-carotene content, the main color substance of O. fragrans, but decreased the linalool content, the main VOC in the floral aroma of O. fragrans. OfGGPPS13 was indicated as the critical gene related to terpenoid synthesis in the floral aroma and color formation in O. fragrans. Our findings provide gene resources on the GGPPS gene family for further revealing the molecular regulation mechanism of the floral color and aroma formation in O. fragrans.

Keywords:  GGPPS gene family       Osmanthus fragrans       floral color and aroma formation       functional characterization  
Online: 17 November 2025  
Fund: 

This research was funded by the National Natural Science Foundation of China (32071828 and 32471943), the Central Finance Forestry Science and Technology Promotion Demonstration Project (Su2024TG04), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and partly supported by the open funds of the National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops.

Cite this article: 

Hanruo Qiu, Qingyin Tian, Guimin Zeng, Chenchen Xie, Xiulian Yang, Lianggui Wang, Yuanzheng Yue. 2025. Insights into the geranylgeranyl pyrophosphate synthase (GGPPS) gene family in Osmanthus fragrans and the role of OfGGPPS13 in the formation of floral color and aroma. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.029

Ali F, Qanmber G, Wei Z, Yu D, Li Y H, Gan L, Li F, Wang Z. 2020. Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses. BMC Genomics, 21, 561.

Barja M V, Rodriguez-Concepcion M. 2021. Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. aBiotech, 2, 289-298.

Beck G, Coman D, Herren E, Ruiz-Sola M A, Rodriguez-Concepcion M, Gruissem W, Vranova E. 2013. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Molecular Biology, 82, 393-416.

Bouvier F, Suire C, D'Harlingue A, Backhaus R A, Camara B. 2000. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant Journal, 24, 241-252.

Cai X, Mai R, Zou J, Zhang H, Zeng X, Zheng R, Wang C. 2014. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS. Journal of Zhejiang University-Science B, 15, 638-648.

Chen Q, Fan D, Wang G. 2015. Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Molecular Plant, 8, 1434-1437.

Chen W, He S, Liu D, Patil G B, Zhai H, Wang F, Stephenson T J, Wang Y, Wang B, Valliyodan B, Nguyen H T, Liu Q. 2015. A sweetpotato geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid content and enhances osmotic stress tolerance in Arabidopsis thaliana. Plos One, 10, e137623.

Coman D, Altenhoff A, Zoller S, Gruissem W, Vranova E. 2014. Distinct evolutionary strategies in the GGPPS family from plants. Frontiers in Plant Science, 5, 230.

Ding W, Ouyang Q, Li Y, Shi T, Li L, Yang X, Ji K, Wang L, Yue Y. 2020. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiology, 40, 557-572.

Dong C, Qu G, Guo J, Wei F, Gao S, Sun Z, Jin L, Sun X, Rochaix J D, Miao Y, Wang R. 2022. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Science Bulletin, 67, 315-327.

Dudareva N, Klempien A, Muhlemann J K, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16-32.

Han Y, Wu M, Cao L, Yuan W, Dong M, Wang X, Chen W, Shang F. 2016. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans. Plant Molecular Biology, 91, 485-496.

Huang D, Liu W, Li A, Wang C, Hu Z. 2019. Discovery of geranylgeranyl pyrophosphate synthase (GGPPS) paralogs from Haematococcus pluvialis based on Iso-seq analysis and their function on  astaxanthin biosynthesis. Marine Drugs, 17, 696.

Huang F C, Molnar P, Schwab W. 2009. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany, 60, 3011-3022.

Ji X. 2021. Comparative investigation of volatile components and bioactive compounds in beers by multivariate analysis. Flavour and Fragrance Journal, 36, 374-383.

Lange B M, Ghassemian M. 2003. Genome organization in Arabidopsis thaliana :: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Molecular Biology, 51, 925-948.

Liang P H, Ko T P, Wang A. 2002. Structure , mechanism and function of prenyltransferases. European Journal of Biochemistry, 269, 3339-3354.

Liang P. 2009. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry, 48, 6562-6570.

Liu J, Hu H, Shen H, Tian Q, Ding W, Yang X, Wang L, Yue Y. 2022. Insights into the cytochrome P450 monooxygenase superfamily in Osmanthus fragrans and the role of OfCYP142 in linalool synthesis. International Journal of Molecular Sciences, 23, 12150.

Lois L M, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant Journal, 22, 503-513.

Matthews P D, Wurtzel E T. 2000. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Applied Microbiology and Biotechnology, 53, 396-400.

Mcgarvey D J, Croteau R. 1995. Terpenoid metabolism. Plant Cell, 7, 1015-1026.

Newman J D, Chappell J. 1999. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Critical Reviews in Biochemistry and Molecular Biology, 34, 95-106.

Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. 2000. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiology, 122, 1045-1056.

Orlova I, Nagegowda D A, Kish C M, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N. 2009. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell, 21, 4002-4017.

Pichersky E, Gershenzon J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237-243.

Rasouli O, Ahmadi N, Monfared S R, Sefidkon F. 2018. Physiological, phytochemicals and molecular analysis of color and scent of different landraces of Rosa damascena during flower development stages. Scientia Horticulturae, 231, 144-150.

Ruiz-Sola M A, Coman D, Beck G, Barja M V, Colinas M, Graf A, Welsch R, Rutimann P, Buhlmann P, Bigler L, Gruissem W, Rodriguez-Concepcion M, Vranova E. 2016. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytologist, 209, 252-264.

Satta A, Esquirol L, Ebert B E, Newman J, Peat T S, Plan M, Schenk G, Vickers C E. 2022. Molecular characterization of cyanobacterial short-chain prenyltransferases and discovery of a novel GGPP phosphatase. FEBS Journal, 289, 6672-6693.

Schmidt A, Wachtler B, Temp U, Krekling T, Seguin A, Gershenzon J. 2010. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiology, 152, 639-655.

Simkin A J, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc'H N, Clastre M. 2011. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta, 234, 903-914.

Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid metabolism in plants: the role of plastids. Molecular Plant, 11, 58-74.

Tata S K, Jung J, Kim Y, Choi J Y, Jung J, Lee I, Shin J S, Ryu S B. 2016. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnology Journal, 14, 29-39.

Tholl D, Kish C M, Orlova I, Sherman D, Gershenzon J, Pichersky E, Dudareva N. 2004. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell, 16, 977-992.

Vranova E, Hirsch-Hoffmann M, Gruissem W. 2011. AtIPD: A curated database of arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiology, 156, 1655-1660.

Wang G, Dixon R A. 2009. Heterodimeric geranyl(geranyl) diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 9914-9919.

Xu L, Gao F, Feng J, Lv J, Liu Q, Nan F, Liu X, Xie S. 2021. Relationship between beta-carotene accumulation and geranylgeranyl pyrophosphate synthase in different species of Dunaliella. Plants-Basel, 11, 27.

Yan L, Fang Z, Zhang N, Yang L, Zhang Y, Zhuang M, Lv H, Ji J, Wang Y. 2023. Genome-wide identification, characterization, and expression analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene family reveals its importance in chloroplasts of Brassica oleracea L. Agriculture-Basel, 13, 1615.

Yang X, Yue Y, Li H, Ding W, Chen G, Shi T, Chen J, Park M S, Chen F, Wang L. 2019. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Horticulture Research, 1, 102-114.

Yang Z, Zhu Y, Zhang X, Zhang H, Zhang X, Liu G, Zhao Q, Bao Z, Ma F. 2023. Volatile secondary metabolome and transcriptome analysis reveals distinct regulation mechanism of aroma biosynthesis in Syringa oblata and S. vulgaris. Plant Physiology and Biochemistry, 196, 965-973.

Zhang C, Liu H, Zong Y, Tu Z, Li H. 2021. Isolation, expression, and functional analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene from Liriodendron tulipifera. Plant Physiology and Biochemistry, 166, 700-711.

Zhu X F, Suzuki K, Okada K, Tanaka K, Nakagawa T, Kawamukai M, Matsuda K. 1997. Cloning and functional expression of a novel geranylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli. Plant and Cell Physiology, 38, 357-361.

Zhu X F, Suzuki K, Saito T, Okada K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M. 1997. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Molecular Biology, 35, 331-341.

[1] Rui Liu, Hongna Cheng, Dandan Qin, Le Xu, Fuchao Xu, Qing Xu, Yanchun Peng, Shuangtao Ge, Longqing Sun, Guoqing Dong, Jing Dong. Functional characterization and identification of superior haplotypes of barley HvGL7-2H (Hordeum vulgare L.) in grain features[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4153-4167.
[2] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[3] YANG Meng-ya, CHEN Jia-qi, TIAN He-yang, NI Chen-yang, XIAO Kai. TaARR1, a cytokinin response regulator gene in Triticum aestivum, is essential in plant N starvation tolerance via regulating the N acquisition and N assimilation[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2691-2702.
[4] SHI Gui-qing, FU Jing-ying, RONG Ling-jie, ZHANG Pei-yue, GUO Cheng-jin, XIAO Kai. TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2369-2378.
[5] WEI Shi-wei, ZHANG Fu-rong, ZHANG Yi-dong, WANG Li-min, CHEN Jia-bei , HUANG Danfeng. Comparative Analysis of Gene Expression in Two Muskmelon Cultivars (Cucumis melo L.) Under Salt Stress[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2132-2140.
No Suggested Reading articles found!