Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The inhibition of photosynthesis and enhancement of pigment degradation resulted in variegated phenotype in tea leaves (Camellia sinensis)

Yifan Li, Huiyan Jia, Yafei Guo, Zuguo Xi, Yufei Wang, Mengqian Lu, Wei Tong, Qianying Dai, Weiwei Deng#

National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

近期研究发现,具有稳定叶色变异表型的杂色茶树表现出独特的生理特征。与传统绿叶茶树品种相比,其叶片氨基酸含量显著提升,多酚类物质含量则呈下降趋势。本研究以‘黄山种’茶树的杂色叶片与绿色叶片为实验材料,系统开展光合色素含量测定及转录组比较分析。研究结果表明,杂色叶片的叶绿素总量较绿色叶片显著降低,而Chl a/Chl b比值显著升高。进一步分析显示,多个参与葡萄糖代谢的基因(CsrpiACsGAPDHCsgpmICsPKCsOGDH)在杂色叶片中呈现表达上调光系统Ⅱ复合体基因(CspsbPCspsbW)及光捕获蛋白复合体基因(CsLhca1CsLhca4CsLhcb1CsLhcb3)等光合通路关键基因的表达水平在杂色叶片中显著下调。同时,参与叶绿素分解代谢的相关基因(CsSGRCsCLH1)在杂色叶片中表达显著上调。与野生型相比,CsCLH1CsCLH2转基因植株叶绿素含量无显著变化。体外酶活性测定证实,CsCLH1具有降解叶绿素的酶活性亚细胞定位结果证实CsCLH1CsCLH2蛋白均定位于细胞质与细胞核内。因此,CsCLH1在体内不具有降解叶绿素的能力。上,茶树叶片杂色表型的形成与光合系统功能损伤、碳水化合物合成抑制及光合色素降解加速的协同作用有关该研究成果不仅深化了对植物叶片变异分子机制的认知,也为解析植物叶色调控网络提供了新的理论依据。



Abstract  

A novel variegated tea cultivar exhibiting a stable variegated phenotype was recently identified, demonstrating significantly elevated amino acid content concomitantly with reduced polyphenolic compound levels compared to conventional green-leaf varieties. Nevertheless, the underlying mechanism remains unclear. Here, variegated leaves and normal leaves of ‘Huangshanzhong’ tea plant were used to perform pigment content analysis and comparative transcriptome analysis. The chlorophyll content in variegated leaves significantly decreased compared to normal leaves, while the ratio of Chl a to Chl b was enhanced. Multiple genes (CsrpiA, CsGAPDH, CsgpmI, CsPK and CsOGDH) involved in sugar metabolism exhibited downregulated expression in variegated leaves. Key genes involved in the photosynthetic pathway were down-regulated in variegated leaves, such as light-harvesting protein complex chlorophyll a/b binding proteins (CsLhca1, CsLhca4, CsLhcb1 and CsLhcb3) and photosystem II complex proteins (CspsbP and CspsbW). Meanwhile, genes involved in chlorophyll degradation metabolism (CsSGR, CsCLH1) were upregulated in variegated leaves. Compared to the wild type, transgenic plants of CsCLH1 and CsCLH2 exhibited no significant changes in chlorophyll content. Enzyme activity assays showed that CsCLH1 could degrade chlorophyll in vitro. Subcellular localization results revealed that CsCLH1 and CsCLH2 were localized in the cytoplasm and nucleus. These findings suggest that impaired photosynthetic system function, suppressed carbohydrate synthesis, and accelerated degradation of photosynthetic pigments collectively contribute to the variegated phenotype in tea leaves. This study advances our understanding of mechanisms underlying plant leaf variegation.

Keywords:  Camellia sinensis        Variegated phenotype        Transcriptome        Chlorophyll metabolism        Photosynthesis  
Online: 25 October 2025  
Fund: 

This study was supported by the National Key Research and Development Program of China (2021YFD1601103), the National Natural Science Foundation of China (NSFC, Grant No. 31870679), the earmarked fund CARS (CARS-19) and the Anjibaicha Tea Resource Comprehensive Utilization Research Center.

About author:  #Corresponding Author: Wei-Wei Deng:dengweiwei@ahau.edu.cn,Tel/fax: +86 551 65786401

Cite this article: 

Yifan Li, Huiyan Jia, Yafei Guo, Zuguo Xi, Yufei Wang, Mengqian Lu, Wei Tong, Qianying Dai, Weiwei Deng. 2025. The inhibition of photosynthesis and enhancement of pigment degradation resulted in variegated phenotype in tea leaves (Camellia sinensis). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.012

Aluru M R, Zola J, Foudree A, Rodermel S R. 2009. Chloroplast photooxidation-induced transcriptome reprogramming in Arabidopsis immutans white leaf sectors. Plant Physiology, 150, 904-923.

Benedetti C E, Arruda P. 2002. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiology, 128, 1255–1263.

Cai W H, Zheng X Q, Liang Y R. 2022. High-light-induced degradation of photosystem II subunits’ involvement in the albino phenotype in tea plants. International Journal of Molecular Science, 23, 8522.

Cantwell M I, Hong G, Albornoze K, Berlanga M. 2022. Fresh grapevine (Vitis vinifera L.) leaves: Postharvest biology and handling recommendations. Scientia Horticulturae, 292, 110627.

Chen X F, Li J J, Yu Y, Kou X B, Periakaruppan R, Chen X, Li X H. 2022a. STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm ‘Huabai 1’. Scientia Horticulturae, 293, 110653.

Chen P H, Tjong W Y, Yang H C, Liu H Y, Stern A, Chiu D T Y. 2022b. Glucose-6-phosphate dehydrogenase, redox homeostasis and embryogenesis. International Journal of Molecular Sciences, 23, 2017.

Chen Y J, Han Y X, He S Q, Cheng Q H, Tong H R. 2024. Differential metabolic profiles of pigment constituents affecting leaf color in different albino tea resources. Food Chemistry, 46, 142290.

Croce R, van Amerongen H. 2014. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492-501.

Daddow L Y. 1983. A double lead stain method for enhancing contrast of ultrathin sections in electron microscopy: a modified multiple staining technique. Journal of Microscopy, 129, 147-153.

Du Y Y, Shin S, Wang K R, Lu J L, Liang Y R. 2009. Effect of temperature on the expression of genes related to the accumulation of chlorophylls and carotenoids in albino tea. Journal of Horticultural Science & Biotechnology, 84, 365-369.

Feng L, Gao M J, Hou R Y, Hu X Y, Zhang L, Wan X C, Wei S. 2014. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry, 155, 98-104.

Fukasawa A, Suzuki Y, Terai H, Yamauch N. 2010. Effects of postharvest ethanol vapor treatment on activities and gene expression of chlorophyll catabolic enzymes in broccoli florets. Postharvest Biology and Technology, 55, 97-102.

Gao X Z, Zhang C Y, Lu C, Wang M H, Xie N C, Chen J J, Li Y F, Chen J H, Shen C W. 2021. Disruption of photomorphogenesis leads to abnormal chloroplast development and leaf variegation in Camellia sinensis. Frontiers in Plant Science, 12, 720800.

Han Z, Wang K, Deng L, Ming L I, Zhang L J. 2013. Albino tea cultivars-Huangjinban. Tea, 39, 125-126. (in Chinese)

Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth Y M, Hortensteiner S, Gidoni D, Gal-On A, Goldschmidit E, Eyal Y. 2007. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 19, 1007-1022.

Hirschfeld K R, Goldschmidt E E. 1983. Chlorophyllase activity in chlorophyll-free citrus chromoplasts. Plant Cell Reports, 2, 117-118.

Hortensteiner S. 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology. 57, 55-77.

Hu X Y, Makita S, Schelbert S, Sano S, Ochiai M, Tsuchiya T, Hasegawa S F, Hortensteiner S, Tanaka A, Tanaka R. 2015. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiology, 167, 660-670.

Kariola T, Brader G, Li J, Tapio Palva E. 2005. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 17, 282–294.

Li Q, Huang J N, Liu S Q, Li J, Yang X H, Liu Y S, Liu Z H. 2011. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Science, 9,44.

Li C F, Ma J Q, Huang D J, Ma C L, Jin J Q, Yao M Z, Chen L. 2018. Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry, 66, 2040-2048.

Li N N, Lu J L, Li Q S, Zheng X Q, Wang X C, Wang L, Wang Y C, Ding C Q, Liang Y R, Yang Y J. 2019. Dissection of chemical composition and associated gene expression in the pigment-deficient tea cultivar ‘xiaoxueya’ reveals an albino phenotype and metabolite formation. Frontiers in Plant Science, 10, 1543.

Li N N, Yang Y P, Ye J H, Lu J L, Zheng X Q, Liang Y R. 2016. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant. Plant Growth Regulation, 78, 253-262.

Li Y R, Li W J, Hu D, Shen P, Zhang G H, Zhu Y. 2020. Comparative analysis of the metabolome and transcriptome between green and albino zones of variegated leaves from Hydrangea macrophylla ‘Maculata’ infected by hydrangea ringspot virus. Plant Physiology and Biochemistry, 157, 195-210.

Li Y F, Han Z, Wang M, Yan Y X, Ma R H, Wang H P, Deng W-W. 2025. Metabolomics and sensory evaluation reveal the influence of four albino tea cultivars on the quality of processed green tea. Food Research International, 209, 116180.

Liu W M, Liu S Y, Zhang K Y, Xie M W, Sun H W, Huang X Q, Zhang L X, Li Min. 2023. Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant. Horticultural Plant Journal, 9, 1162-1176.

Liu G F, Han Z X, Feng L, Gao L P, Gao M J, Gruber M Y, Zhang Z L, Xia T, Wan X C, Wei S. 2017. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production. Science Reports, 7, 45062.

Lu M Q, Li Y F, Jia H Y, Xi Z G, Gao Q J, Zhang Z Z, Deng W W. 2022. Integrated proteomics and transcriptome analysis reveal a decreased catechins metabolism in variegated tea leaves. Science Horticulturae, 295, 110824.

Levin G, Schuster G. 2023. LHC-like proteins: The guardians of photosynthesis. International Journal of Molecular Sciences, 24, 2503.

Ma C Y, Cao J X, Li J K, Zhou B, Tang J C, Miao A Q. 2016. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis. Scientific Reports, 6, 33369.

Matile P, Schellenberg M, Vicentini F. 1997. Localization of chlorophyllase in the chloroplast envelope. Planta. 201, 96-99.

Okazawa A, Tango L, Itoh Y, Fukusaki E, Kobayashi A. 2006. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences, 61, 111-117.

Paddock T N, Mason M E, Lima D F, Armstrong G A. 2010. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Molecular Biology, 72, 445-457.

Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. 2007. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 19, 1649-1664.

Qin G J, Gu H Y, Ma L G, Peng Y B, Deng X W, Chen Z L, Qu L J. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 17, 471-482.

Turkozu D, Sanlier N. 2017. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Critical Reviews In Food Science and Nutrition, 57, 1681-1687.

Sakuraba Y, Schelbert S, Park S Y, Han S H, Lee B D, Andres C B, Kessler F, Hortensteiner S, Paek N C. 2012. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell, 24, 507-518.

Schenk N, Schelbert S, Kanwischer M, Goldschmidt E E, Dormann P, Hortensteiner S. 2007. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Letters, 581, 5517-5525.

Shemer T, Harpaz-Saad S, Belausov E, Lovat N, Krokhin O, Spicer V, Standing K G, Goldschmidt E E, Eyal Y. 2008. Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: A study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiology, 148, 108-118.

Stincone A, Prigione A, Cramer T, Wamelink M M C, Campbell K, Cheung E, Olin-Sandoval V, Gruning N M, Kruger A, Alam M T, Keller M A, Breitenbach M, Brindle K M, Rabinowitz J D, Ralser M. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews, 90, 927-963.

Tian Y Y, Wang H Y, Sun P, Fan Y G, Qiao M M, Zhang L X, Zhang Z Q. 2019. Response of leaf color and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions. Scientia Horticulturae, 251, 225-232.

Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K. 1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate. Proceedings of the National Academy of Sciences of the United States of America, 96, 15362-15367.

Wang K R, Du Y Y, Shao S H, Lin C, Ye Q, Lu J L, Lliang Y R. 2010. Development of specific RAPD markers for identifying albino tea cultivars 'Qiannianxue'and 'Xiaoxueya'. African Journal of Biotechnology, 9, 434-437.

Wang S B. 2011. Study on the regularity of chlorophyll content in ‘Anji baicha’. Zhejiang Agricultural Sciences, 6, 1269-1272. (in Chinese)

Wang F, Chen Y Z, Wang X P, You Z M, Chen C S. 2016. Leaf functional and photosynthetic characteristics in different leaves positions of tea plant. Journal of Tea Science, 36, 77-84.

Wang Y J, Hu X, Jin G, Hou Z W, Ning J M, Zhang Z Z. 2019. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging. Journal of the Science of Food and Agriculture, 99, 1997-2004.

Wei K, Wang L Y, Zhou J, He W, Zeng J M, Jiang Y W, Cheng H. 2012. Comparison of catechins and purine alkaloids in albino and normal green tea cultivars (Camellia sinensis L.) by HPLC. Food Chemistry, 130, 720-724.

Wu Q J, Chen Z D, Sun W J, Deng T T, Chen M J. 2016. De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan. Frontiers in Plant Science, 7, 332.

Wu Z J, Liu K Y, Zhang X, Tang Q H, Zeng L. 2024. CsNYC1a mediates chlorophyll degradation and albino trait formation in the Arbor-Type tea plant Camellia nanchuanica. Journal of Agricultural and Food Chemistry. 72.

Xu X F, Zhu H Y, Ren Y F, Ye Z H, Cai H M, Wan X C, Peng C Y. 2021. Efficient isolation and purification of tissue-specific protoplasts from tea plants (Camellia sinensis (L.) O. Kuntze). Plant Methods, 17, 84.

Zhang C Y, Wang M H, Gao X Z, Zhou F, Shen C W, Liu Z H. 2020. Multi-omics research in albino tea plants: Past, present, and future. Scientia Horticulturae, 261, 108943.

Zhang C Y, Liu H R, Wang J Y, Li Y Y, Liu D D, Ye Y Y, Huang R, Li S J, Chen L, Chen J D, Yao M Z, Ma C L.2024. A key mutation in magnesium chelatase I subunit leads to a chlorophyll-deficient mutant of tea (Camellia sinensis). Journal of Experimental Botany, 75, 935-946.

Zheng C H, Xu Z H, Wang Y Z, Zhang M M, Du K J, Li X J, Liu C P. 2023. Four Ailanthus altissima(Mill) swings varieties: pigment compostion and distribution of leaves at different positions. Chinese Agricultural Science Bulletin, 32, 56-65. (in Chinese)

[1] Xinyu Man, Sha Tang, Yu Meng, Yanjia Gong, Yanqing Chen, Meng Wu, Guanqing Jia, Jun Liu, Xianmin Diao, Xiliu Cheng. Convergent and divergent signaling pathways in C3 rice and C4 foxtail millet crops in response to salt stress[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3719-3738.
No Suggested Reading articles found!