Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1194-1208    DOI: 10.1016/j.jia.2025.05.004
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Granulated organic amendment enhances recalcitrant carbon accumulation through soil aggregation in a barren paddy field

Yan Li1, 2, 3, Xiaobin Guo1, 3#, Yingnan Xian1, 4, Zhe Li1, 2, 3, Haoyu Fu1, Li Tang1, Yuting Dai1, 3, Wei Gao1, 3, Yan Li1, 3, Ping Zhou1, 3, Shoulong Liu1, 3, Jinshui Wu1, 2, 3

1 Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Changsha 410125, China

4 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

 Highlights 
The physical protection of MAOC from aggregates reduces recalcitrant carbon loss.
Granulated organic amendment enhances the formation of intra-microaggregates within macroaggregates.  
Preservation of recalcitrant carbon occurs primarily within microaggregates.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

贫瘠稻田广泛分布在我国亚热带地区,具有土壤结构差、耕层浅薄且有机碳含量低等典型特征,严重制约水稻生产。针对稻田秸秆还田难的问题,有机物料颗粒化作为一种新型土壤改良模式,展现出巨大的应用潜力。已有研究表明,颗粒化秸秆还田能改善土壤理化性质并快速提升土壤有机碳含量,但其在贫瘠稻田中的提升机制尚不明确。因此,本研究评估了不同改良措施包括:不施加有机物料(CK)、10 t ha-1腐熟牛粪(M10)、20 t ha-1颗粒有机物料(G20)和40 t ha-1颗粒有机物料(G40),对表层(0-20 cm)和亚表层(20-40 cm)土壤结构、团聚体相关碳(AAC)含量、团聚体内颗粒有机碳(POC)与矿物结合有机碳(MAOC)含量以及顽固性有机碳的影响。结果表明:有机物料颗粒化施用显著提高宏团聚体(>250 μm)比例并改善土壤结构稳定性。提升了各粒径团聚体有机碳浓度,促进了有机碳从微团聚体(53-250 µm)和粉黏粒(<53 µm)组分向宏团聚体迁移。随团聚体粒径减小,POCAAC中的占比降低而MAOC占例升高。在表层土壤中,大团聚体形成增强了对POC的保护,促进了MAOC中非水解碳的积累,并加速了内生微团聚体的形成;而在亚表层,矿物对有机碳的结合保护是主要的固碳形式。综上,40 t ha-1颗粒有机物料投入能有效改善贫瘠稻田土壤团粒结构、提升SOC含量并增强有机碳的稳定性,为贫瘠稻田的可持续管理和改良提供了创新解决方案。



Abstract  

Barren paddy fields characterized by poor soil structure, shallow tillage layers and low organic carbon content are a common limitation to rice production in subtropical China.  As a novel approach to soil improvement, granulated organic amendments offer significant potential.  Previous studies have shown that granulated straw can improve soil physicochemical properties and rapidly increase the soil organic carbon (SOC) content.  However, their effects on barren paddies remain underexplored.  This study evaluated four soil amendment strategies: no organic amendments (CK), 10 t ha–1 of composted manure (M10), 20 t ha–1 of granulated organic amendment (G20), and 40 t ha–1 of granulated organic amendment (G40).  The objective was to assess the effects of these amendments on soil structure, the contents of aggregate-associated carbon (AAC), particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), and the chemical stability of MAOC among various size aggregates in both topsoil (0–20 cm) and subsoil (20–40 cm).  The results demonstrated that organic amendment inputs significantly increased the macroaggregate (>250 µm) proportion and improved soil structural stability.  These amendments also elevated the carbon concentration within aggregates of various sizes and facilitated the redistribution of organic carbon from microaggregates (53–250 µm) and silt+clay fractions (<53 µm) to macroaggregates.  The proportion of POC to AAC declined with decreasing aggregate size, whereas the proportion of MAOC increased.  In the topsoil, macroaggregate formation enhanced the protection of POC, supported the accumulation of non-hydrolyzable carbon within MAOC, and accelerated the formation of intra-microaggregates.  In the subsoil, mineral-bound organic carbon remained the dominant form of carbon sequestration.  In conclusion, the application of 40 t ha–1 of granulated organic amendment proved to be a successful tactic for enhancing soil physicochemical structure, increasing SOC content, and improving carbon stability.  This approach offers a promising and innovative solution for the sustainable management and restoration of barren paddy fields.  

Keywords:  granulated organic amendment       soil aggregates       aggregate-associated carbon fraction       recalcitrant carbon  
Received: 07 January 2025   Accepted: 14 April 2025 Online: 14 May 2025  
Fund: 

This work was financially supported by the National Key Research and Development Program of China (2024YFD1900104 and 2021YFD1901203), the National Natural Science Foundation of China (42177293, 42130716 and U23A2009), and the Chinese Academy of Sciences Talent Plan Program.  

About author:  Yan Li, E-mail: liyan_swu@163.com; #Correspondence Xiaobin Guo, E-mail: gxbguo@gmail.com

Cite this article: 

Yan Li, Xiaobin Guo, Yingnan Xian, Zhe Li, Haoyu Fu, Li Tang, Yuting Dai, Wei Gao, Yan Li, Ping Zhou, Shoulong Liu, Jinshui Wu. 2026. Granulated organic amendment enhances recalcitrant carbon accumulation through soil aggregation in a barren paddy field. Journal of Integrative Agriculture, 25(3): 1194-1208.

Abiven S, Heim A, Schmidt M W I. 2011. Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: Consequences for assessing lignin dynamics in soil. Plant and Soil343, 369–378.

Adu J K, Oades J M. 1978. Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology and Biochemistry10, 109–115.

Amézketa E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture14, 83–151.

An S, Mentler A, Mayer H, Blum W E H. 2010. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena81, 226–233.

Angst G, Mueller K E, Nierop K G J, Simpson M J. 2021. Plant- or microbial-derived? A review of the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry156, 108189.

Bai J, Zhang S, Huang S, Xu X, Zhao S, Qiu S, He P, Zhou W. 2023. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study. Journal of Integrative Agriculture22, 3517–3534.

Balabane M, Plante A F. 2004. Aggregation and carbon storage in silty soil using physical fractionation techniques. European Journal of Soil Science55, 415–427.

Bhattacharyya S S, Ros G H, Furtak K, Iqbal H M N, Parra-Saldívar R. 2022. Soil carbon sequestration - An interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment815, 152928.

Briedis C, de Moraes Sá J C, Caires E F, de Fátima Navarro J, Inagaki T M, Boer A, Neto C Q, de Oliveira Ferreira A, Canalli L B, dos Santos J B. 2012. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma170, 80–88.

Bronick C J, Lal R. 2005. Soil structure and management: A review. Geoderma124, 3–22.

Bucka F B, Kölbl A, Uteau D, Peth S, Kögel-Knabner I. 2019. Organic matter input determines structure development and aggregate formation in artificial soils. Geoderma354, 1138813.

Burger D J, Schneider F, Bauke S L, Kautz T, Don A, Amelung W. 2023. Fifty years after deep-ploughing: Effects on yield, roots, nutrient stocks and soil structure. European Journal of Soil Science74, e13426.

Button E S, Pett-Ridge J, Murphy D V, Kuzyakov Y, Chadwick D R, Jones D L. 2022. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biology and Biochemistry170, 108697.

Cai S S, Sun L, Wang W, Li Y, Ding J L, Jin L, Li Y M, Zhang J M, Wang J K, Wei D. 2024. Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates. Journal of Integrative Agriculture23, 1703–1717.

Chen D, Yuan L, Liu Y, Ji J, Hou H. 2017. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. European Journal of Agronomy, 90, 34–42.

Chen R, Yin L, Wang X, Chen T, Jia L, Jiang Q, Lyu M, Yao X, Chen G. 2023. Mineral-associated organic carbon predicts the variations in microbial biomass and specific enzyme activities in a subtropical forest. Geoderma439, 116671.

Chenu C, Stotzky G. 2002. Interactions between microorganisms and soil particles: An overview. In: Huang P M, Bollag J M, Senesi N, eds., Interactions Between Soil Particles and Microorganisms - Impact on the Terrestrial Ecosystems. John Wiley and Sons, Chichester, UK. pp. 3–40.

Christensen B T. 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. In: Stewart B A, ed., Advances in Soil Science, Springer, New York, NY. pp. 1–90.

Cong P, Li Y, Gao Z, Wang J, Zhang L, Pang H. 2019. High dosage of pelletized straw returning rapidly improving soil organic carbon content and wheat–maize yield. Transactions of the Chinese Society of Agricultural Engineering35, 148–156. (in Chinese)

Cong P, Pang H, Wang J, Liu N, Li Y, Zhang L. 2020. Effect of returning chopped and pelletized straw at a high rate enhancing soil organic carbon in subsoil of farmlands of black soil. Acta Pedologica Sinica57, 811–823. (in Chinese)

Cooper J, Greenberg I, Ludwig B, Hippich L, Fischer D, Glaser B, Kaiser M. 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. AgricultureEcosystems & Environment295, 106882.

Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. 2019. Soil carbon storage is informed by particulate and mineral-associated organic matter. Nature Geoscience12, 989–994.

Cotrufo M F, Wallenstein M, Boot M C, Denef K, Paul E A. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology19, 988–995.

Craig M E, Turner B L, Liang C, Clay K, Johnson D J, Phillips R P. 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology24, 3317–3330.

Di J, Xu M, Zhang W, Tong X, He X, Gao H, Liu H, Wang B. 2018. Combinations of soil properties, carbon inputs and climate control the saturation deficit dynamics of stable soil carbon over 17-year fertilization. Scientific Reports8, 12653.

Diacono M, Montemurro F. 2011. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development30, 401–422.

Duan X, Chen X, Zhang W, Wang J, Xie L, Xu Y, Hu S, Zhu G, Gao W, Wu J. 2025. Carbon accumulation efficiency of granulated straw incorporation and its response to nutrient supplement in infertile agricultural soils: Evidence from biomarkers. Soil Ecology Letters7, 240284.

Elmholt S, Schjønning P, Munkholm L J, Debosz K. 2008. Soil management effects on aggregate stability and biological binding. Geoderma144, 455–467.

Even R J, Cotrufo M F. 2024. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation. Geoderma442, 116760.

Fan W, Wu J. 2020. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming. Journal of Microbiology58, 657–667.

Fu Z, Hu W, Beare M, Baird D. 2024. Soil macroaggregate-occluded mineral-associated organic carbon drives the response of soil organic carbon to land use change. Soil and Tillage Research244, 106271.

Giannetta B, Plaza C, Zaccone C, Vischetti C, Rovira P. 2019. Ecosystem type effects on the stabilization of organic matter in soils: Combining size fractionation with sequential chemical extractions. Geoderma353, 423–434.

Golchin A, Clarke P, Oades J M. 1996. The heterogeneous nature of microbial products as shown by solid-state 13C CP/MAS NMR spectroscopy. Biogeochemistry34, 71–97.

Guan S, Liu S, Liu R, Zhang J, Ren J, Cai H, Lin X. 2019. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. Journal of Integrative Agriculture18, 1496–1507.

Hall S J, McNicol G, Natake T, Silver W L. 2015. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: Insights from paired 14C analysis. Biogeosciences12, 2471–2487.

Han C, Chen L, Jia Z, Zou H, Ma L, Feng B, Li J, Zhou G, Zhang C, Ma D, Zhang J. 2024. Joint regulation of the soil organic carbon accumulation by mineral protection and microbial properties following conservation practices. Catena245, 108298.

Hartemink A E, Zhang Y, Bockheim J G, Curi N, Silva S H G, Grauer-Gray J, Lowe D J, Krasilnikov P. 2020. Soil horizon variation: A review. Advances in Agronomy160, 125–185.

Islam M R, Singh B, Dijkstra F A. 2022. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry160, 145–158.

Jagadamma S, Lal R. 2010. Integrating physical and chemical methods for isolating stable soil organic carbon. Geoderma158, 322–330.

Jakab G, Bede-Fazekas Á, Vona V, Madarász B, Karlik M, Zacháry D, Filep T, Dévény Z, Centeri C, Masoudi M, Bidló A, Al-Graiti T, Szatmári G, Vancsik A, Király C, Darabos G, Angyal Z, Szalai Z. 2024. Beyond land use: Understanding variations in topsoil bulk versus recalcitrant organic matter. Catena244, 108232.

Jastrow J D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry28, 665–676.

Jia L Li P, Su T, Kong D, Chen Q, Li X, Jiao J, Hu F. 2024. Pig manure addition promotes organic carbon sequestration dominantly contributed by mineral protection in upland red soil. Land Degradation & Development35, 4948–4960.

Jilling A, Keiluweit M, Gutknecht J L M, Grandy A S. 2021. Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry158, 108265.

Kallenbach C M, Frey S D, Grandy A S. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications7, 13630.

Keiluweit M, Bougoure J J, Nico P S, Pett-Ridge J, Weber P K, Kleber M. 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change5, 588–595.

Kemper W D, Rosenau R C. 1986 Aggregate stability and size distribution. In: Klute A, ed., Methods of Soil Analysis. Part 1 Physical Mineralogical Methods. Soil Science Society of America, USA. pp. 425–442.

Kleber M, Bourg I C, Coward E K, Hansel C M, Myneni S C B, Nunan N. 2021. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment2, 402–421.

Kumar R, Rawat K S, Singh J, Singh A K, Rai A. 2013. Soil aggregation dynamics and carbon sequestration. Journal of Applied and Natural Sciences5, 250–267.

Lan X, Shan J, Huang Y, Liu X, Lv Z, Ji J, Hou H, Xia W, Liu Y. 2022. Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of southern China. Soil and Tillage Research221, 105395.

Lavallee J M, Soong J L, Cotrufo M F. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology26, 261–273.

Lehndorff E, Rodionov A, Plümer L, Rottmann P, Spiering B, Dultz S, Amelung W. 2021. Spatial organization of soil microaggregates. Geoderma386, 114915.

Leite L F C, de Sá Mendonça E, de Almeida Machado P L O, Fernandes Filho E I, Neves J C L. 2004. Simulating trends in soil organic carbon of an Acrisol under no-tillage and disc-plow systems using the century model. Geoderma120, 283–295.

Li X, Zhu W, Xu F, Du J, Tian X, Shi J, Wei G. 2021. Organic amendments affect soil organic carbon sequestration and fractions in fields with long-term contrasting nitrogen applications. AgricultureEcosystems & Environment322, 107643.

Li Z, Duan X, Guo X, Gao W, Li Y, Zhou P, Zhu Q, O’Donnell A G, Dai K, Wu J. 2024. Microbial metabolic capacity regulates the accrual of mineral-associated organic carbon in subtropical paddy soils. Soil Biology and Biochemistry195, 109457.

Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology25, 3578–3590.

Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

Liebmann P, Mikutta R, Kalbitz K, Wordell-Dietrich P, Leinemann T, Preusser S, Mewes O, Perrin E, Bachmann J, Don A, Kandeler E, Marschner B, Schaarschmidt F, Guggenberger G. 2022. Biogeochemical limitations of carbon stabilization in forest subsoils. Journal of Plant Nutrition and Soil Science185, 35–43.

Liu K, Huang J, Li D, Yu X, Ye H, Hu H, Hu Z, Huang Q, Zhang H. 2019. Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China. Journal of Integrative Agriculture18, 1348–1359.

Liu X, Zhang Y, Zhang L, Fang X, Deng W, Liu Y. 2023. Aggregate-associated soil organic carbon fractions in subtropical soil undergoing vegetative restoration. Land Degradation & Development34, 4296–4306.

von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B. 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry39, 2183–2207.

Ma S, Cao Y, Lu J, Ren T, Cong R, Lu Z, Zhu J, Li X. 2024. Response of soil aggregation and associated organic carbon to organic amendment and its controls: A global meta-analysis. Catena237, 107774.

Ma X, Xu M, Zhao H, Duan Y. 2019. Decomposition characteristics and driving factors of organic materials in typical farmland soils in China. Scientia Agricultura Sinica52, 1564–1573. (in Chinese)

Márquez C O, García V J, Schultz R C, Isenhart T M. 2017. Assessment of soil degradation through soil aggregation and particulate organic matter following conversion of riparian buffer to continuous cultivation. European Journal of Soil Science68, 295–304.

Marriott E E, Wander M M. 2006. Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal70, 950–959.

Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes P M, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt M W I, Schwark L, Wiesenberg G L B. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science171, 91–110.

Nisar S, Benbi D K. 2024. Tillage and mulching effects on carbon stabilization in physical and chemical pools of soil organic matter in a coarse textured soil. Geoderma Regional38, e00827.

Oades J M. 1984. Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil76, 319–337.

Paul E A, Follett R F, Leavitt S W, Halvorson A, Peterson G A, Lyon D J. 1997. Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal61, 1058–1067.

Peng X, Huang Y, Duan X, Yang H, Liu J. 2023. Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China. Catena220, 106721.

Plante A F, Conant R T, Paul E A, Paustian K, Six J. 2006. Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. European Journal of Soil Science57, 456–467.

Poeplau C, Don A, Six J, Kaiser M, Benbi D, Chenu C, Cotrufo M F, Derrien D, Gioacchini P, Grand S, Gregorich E, Griepentrog M, Gunina A, Haddix M, Kuzyakov Y, Kühnel A, Macdonald L M, Soong J, Trigalet S, Vermeire M L, et al. 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils - A comprehensive method comparison. Soil Biology and Biochemistry125, 10–26.

Poirier V, Basile-Doelsch I, Balesdent J, Borschneck D, Whalen J K, Angers D A. 2020. Organo-mineral interactions are more important for organic matter retention in subsoil than topsoil. Soil Systems4, 4.

Pulido-Moncada M, Schjønning P, Labouriau R, Munkholm L J. 2020. Residual effects of compaction on the subsoil pore system - A functional perspective. Soil Science Society of America Journal84, 717–730.

Qiu S, Yang H, Zhang S, Huang S, Zhao S, Xu X, He P, Zhou W, Zhao Y, Yan N, Nikolaidis N, Christie P, Banwart S A. 2023. Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. Catena220, 106708.

Rehman A, Farooq M, Lee D J, Siddique K H M. 2022. Sustainable agricultural practices for food security and ecosystem services. Environmental Science and Pollution Research29, 84076–84095.

Rumpel C, Eusterhues K, Kögel-Knabner I. 2010. Non-cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry42, 379–382.

Shahane A A, Shivay Y S. 2021. Soil health and its improvement through novel agronomic and innovative approaches. Frontiers in Agronomy3, 680456.

Shen X, Wang L, Yang Q, Xiu W, Li G, Zhao J, Zhang G. 2021. Dynamics of soil organic carbon and labile carbon fractions in soil aggregates affected by different tillage managements. Sustainability13, 1541.

Situ G, Zhao Y, Zhang L, Yang X, Chen D, Li S, Wu Q, Xu Q, Chen J, Qin H. 2022. Linking the chemical nature of soil organic carbon and biological binding agent in aggregates to soil aggregate stability following biochar amendment in a rice paddy. Science of the Total Environment847, 157460.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research79, 7–31.

Six J, Elliott E T, Paustian K, Doran J W. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal62, 1367–1377.

Six J, Elliott E T, Paustian K. 2000a. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry32, 2099–2103.

Six J, Feller C, Denef K, Ogle S M, De Moraes Sa J C, Albrecht A. 2002. Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie, 22, 755–775.

Six J, Paustian K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry68, A4–A9.

Six J, Paustian K, Elliott E T, Combrink C. 2000b. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal64, 681–689.

Sokol N W, Sanderman J, Bradford M A. 2019. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 25, 12–24.

Su X, Su X, Zhou G, Du Z, Yang S, Ni M, Qin H, Huang Z, Zhou X, Deng J. 2020. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest. Soil Biology and Biochemistry148, 107898.

Tamura M, Suseela V, Simpson M, Powell B, Tharayil N. 2017. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems. Global Change Biology23, 4002–4018.

Tang J, Mo Y, Zhang J, Zhang R. 2011. Influence of biological aggregating agents associated with microbial population on soil aggregate stability. Applied Soil Ecology47, 153–159.

Tian Y, Wang Q, Gao W, Luo Y, Wu L, Rui Y, Huang Y, Xiao Q, Li X, Zhang W. 2022. Organic amendments facilitate soil carbon sequestration via organic carbon accumulation and mitigation of inorganic carbon loss. Land Degradation & Development33, 1423–1433.

Tisdall J M, Oades J M. 1982. Organic matter and water-stable aggregates in soils. European Journal of Soil Science33, 141–163.

Torn M S, Kleber M, Zavaleta E S, Zhu B, Field C B, Trumbore S E. 2013. A dual isotope approach to isolate soil carbon pools of different turnover times. Biogeosciences10, 8067–8081.

Totsche K U, Amelung W, Gerzabek M H, Guggenberger G, Klumpp E, Knief E, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N, Kögel-Knabner I. 2018. Microaggregates in soils. Journal of Plant Nutrition and Soil Science181, 104–136.

Verchot L V, Dutaur L, Shepherd K D, Albrecht A. 2011. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma161, 182–193.

Villarino S H, Talab E, Contisciani L, Videla C, Geronimo P D, Mastrángelo M E, Georgiou K, Jackson R B, Piñeiro G. 2023. A large nitrogen supply from the stable mineral-associated soil organic matter fraction. Biology and Fertility of Soils59, 833–841.

Violante A, Krishnamurti G S R, Pigna M. 2008. Factors affecting the sorption-Desorption of trace elements in soil environments. In: Violante A, Huang P M, Gadd G M, eds., Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. John Wiley and Sons, Chichester, UK. pp. 169–213.

Wang J, Zhang L, Pang H, Zhang J. 2017. Returning granulated straw for accelerating decomposition rate and improving soil fertility. Transactions of the Chinese Society of Agricultural Engineering33, 177–183. (in Chinese)

Wang L, Wang C, Feng F, Wu Z, Yan H. 2021. Effect of straw application time on soil properties and microbial community in the Northeast China Plain. Journal of Soils and Sediments21, 3137–3149.

Wang Q, Zhang S, Zhang M, Liu P, McLaughlin N B, Jia S, Chen X W, Zhang Y, Liang A. 2023. Soil biotic associations play a key role in subsoil C mineralization: Evidence from long-term tillage trial in the black soil of Northeast China. Soil and Tillage Research234, 105859.

Wang X, Lv G, Zhang Y, Yu Y, Wang X, Peixoto L, Qian C, Pang H. 2023. Annual burying of straw after pelletizing: A novel and feasible way to improve soil fertility and productivity in Northeast China. Soil and Tillage Research230, 105699.

Weidhuner A, Hanauer A, Krausz R, Crittenden S J, Gage K, Sadeghpour A. 2021. Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years. Soil and Tillage Research, 208, 104878.

Wiesmeier M, Steffens M, Mueller C W, Kölbl A, Reszkowska A, Horn S P R, Kögel-Knabner I. 2012. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. European Journal of Soil Science63, 22–31.

Witzgall K, Vidal A, Schubert D I, Höschen C, Schweizer S A, Buegger F, Pouteau V, Chenu C, Mueller C W. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications12, 4115.

Wu Z M, Han X Z, Chen X, Lu X C, Yan J, Wang W, Zou W X, Yan L. 2024. Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils. Journal of Integrative Agriculture23, 2065–2082.

Xue P, Fu Q, Li T, Liu D, Hou R, Li Q, Li M, Meng F. 2022. Effects of biochar and straw application on the soil structure and water-holding and gas transport capacities in seasonally frozen soil areas. Journal of Environmental Management301, 113943.

Yan X, Zhou H, Zhu Q H, Wang X F, Yu X C, Peng X. 2013. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil and Tillage Research130, 42–51.

Yang C Q, Wang X J, Li J N, Zhang G W, Shu H M, Hu W, Han H Y, Liu R X, Guo Z C. 2024. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system. Journal of Integrative Agriculture23, 669–679.

Yu H, Ding W, Chen Z, Zhang H, Luo J, Bolan N. 2015. Accumulation of organic C components in soil and aggregates. Scientific Reports5, 13804.

Zeng X, Zhang J, Wei C, Yu W, Huang D, Xu M, Xu J. 2014. The status and reclamation strategy of low-yield fields in China. Acta Pedologica Sinica51, 675–682. (in Chinese)

Zhang F, Chen X, Yao S, Ye Y, Zhang B. 2022. Responses of soil mineral-associated and particulate organic carbon to carbon input: A meta-analysis. Science of the Total Environment829, 154626.

Zhang J, Li Y. 2023. Analysis of the current situation of medium and low yield fields in China. Frontiers in Sustainable Development3, 11.

Zhang J, Lin X, Li H. 2011. A new generation of controlling technology for the medium and low-yield fields and its potential in large-area balanced grain production increase. Bulletin of the Chinese Academy of Sciences26, 375–382. (in Chinese)

Zhang L, Li Y, Pang H, Wang J, Cong P, Zhang J, Guo J. 2019. Effects of granulated maize straw incorporation on soil organic carbon contents and grain yield. Journal of Agricultural Resources and Environment36, 160–168. (in Chinese)

Zhang L, Wang J, Pang H C, Zhang J T, Guo J J, Dong G H, Cong P. 2018. Effects of pelletized straw on soil nutrient properties in relation to crop yield. Soil Use and Management34, 479–489.

Zhao Y, Chen Y, Dai H, Cui J, Wang L, Sui P. 2021. Effects of organic amendments on the improvement of soil nutrients and crop yield in sandy soils during a 4-year field experiment in Huang-Huai-Hai Plain, Northern China. Agronomy11, 157.

Zhou Z, Ren C, Wang C, Delgado-Baquerizo M, Luo Y, Luo Z, Du Z, Zhu B, Yang Y, Jiao S, Zhao F, Cai A, Yang G, Wei G. 2024. Global turnover of soil mineral-associated and particulate organic carbon. Nature Communications15, 5329.

[1] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[2] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[3] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[4] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[5] LUAN Hao-an, YUAN Shuo, GAO Wei, TANG Ji-wei, LI Ruo-nan, ZHANG Huai-zhi, HUANG Shao-wen. Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2758-2771.
[6] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[7] DU Zhang-liu, WU Wen-liang, ZHANG Qing-zhong, GUO Yan-bin , MENG Fan-qiao. Long-Term Manure Amendments Enhance Soil Aggregation and Carbon Saturation of Stable Pools in North China Plain[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2276-2285.
No Suggested Reading articles found!