Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 192-206    DOI: 10.1016/j.jia.2025.02.009
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
MicroRNA-mediated modulation of immune genes facilitates Metarhizium anisopliae infection in the red imported fire ant, Solenopsis invicta
Yating Xu*, Junaid Zafar*, Liangjie Lin, Hongxin Wu, Zehong Kang, Jie Zhang, Rana Fartab Shoukat, Yongyue Lu, Rui Pang, Fengliang Jin#, Xiaoxia Xu#

State Key Laboratory of Green Pesticide “Belt and Road” Technology Industry/Innovation Institute for Green and Biological Control of Agricultural Pests/College of Plant Protection, South China Agricultural University, Guangzhou 510642, China

 Highlights 
Spatiotemporal profiling of host-encoded microRNAs revealed dynamic regulation of immune pathways in Metarhizium anisopliae-infected Solenopsis invicta.  
MiR-71 and miR-7 regulated key immune pathway genes through direct targeting of ModSP1-Relish and Lysozyme2-Serine protease7, respectively.
Manipulation of miR-71 and miR-7 impaired antifungal immunity and enhanced susceptibility to infection, offering insights for improved mycoinsecticide development.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
红火蚁(Solenopsis invicta Buren)是一种高度侵入性的社会性害虫,威胁着当地的生物多样性、农业和人类健康。红火蚁的先天免疫系统以及复杂的社会免疫反应为制定有效的控制策略带来了挑战。MicroRNA (miRNA) 在基因表达的转录后调控中发挥着关键作用,影响多种生物过程,包括免疫和宿主-病原体相互作用。尽管miRNA 介导的昆虫对病原体的反应已在独居物种中得到广泛研究,但我们对社会昆虫群体中个体成员的先天免疫反应仍知之甚少。为了解决这一知识空白,我们从感染绿僵菌的红火工蚁中构建了小 RNA 文库,并研究了miRNA 介导的对昆虫病原体免疫反应的时间动态。我们鉴定了几种差异表达的miRNA,这些miRNA调控包括Toll、IMD和黑化免疫途径的基因。利用定量实时PCR (qRT-PCR)分析miRNA及其靶基因,特别关注miR-71/ModSP1-Relish和 miR-7/Lysozyme2-Serine protease7的时空动态。我们通过体外双荧光素酶测定验证了miRNA与其靶基因之间的相互作用。与对照组相比,miR-71和miR-7的过表达(通过添加miRNA模拟物)有效抑制了它们的靶基因。这一过程降低了红火蚁的抗真菌免疫反应,同时增加了对绿僵菌感染的易感性。此外,基于RNA干扰的基因沉默阐明了这些免疫基因在调节真菌敏感性中的作用。这为利用现代基因工程工具开发高效且具有毒性的杀真菌剂提供了重要的见解。




Abstract  

The red imported fire ant, Solenopsis invicta Buren, is a highly invasive eusocial insect pest that threatens native biodiversity, agriculture, and human health.  The innate immune system and intricate social immune responses of Sinvicta pose challenges to the development of effective control strategies.  MicroRNAs (miRNAs) play critical roles in the post-transcriptional regulation of gene expression, which influences various biological processes, including immunity and host-pathogen interactions.  While the miRNA-mediated response of insects to pathogens has been extensively studied in solitary insects, little is known about the innate immune responses of individual members within a colony.  To address this gap, we constructed small RNA libraries from Metarhizium anisopliae-infected Sinvicta workers and investigated the temporal dynamics of miRNA-mediated immune responses to the entomopathogen.  Several differentially expressed miRNAs were identified, and they were found to regulate genes involved in the Toll, IMD, and melanization immune pathways.  Quantitative real-time PCR (qRT-PCR) was employed to analyze the spatiotemporal dynamics of key miRNAs/target genes, specifically miR-71/ModSP1-Relish and miR-7/Lysozyme2-Serine protease7.  A dual luciferase assay (in vitro) was performed to validate the interactions between miRNAs and their target genes.  Overexpression of miR-71 and miR-7 (via miRNA mimics) efficiently suppressed their target genes, impaired the antifungal immune response of Sinvicta and increased the susceptibility to Manisopliae infection compared to controls.  Furthermore, RNA interference-based gene silencing elucidated the roles of these immune genes in regulating fungal susceptibility, thus providing vital clues for developing virulent and effective mycoinsecticides using modern genetic engineering tools.  

Keywords:  fire ants        microRNAs        RNAi        host-pathogen        innate immunity       entomopathogenic fungi  
Received: 28 October 2024   Accepted: 20 December 2024 Online: 10 February 2025  
Fund: 

This work was supported by grants from the National Natural Science Foundation of China (32172498 and W2433052), the National Key R&D Program of China (2021YFD1000500), and the Natural Science Foundation of Guangdong, China (2023A1515010305). 

About author:  Yating Xu, E-mail: xuyt1101@stu.scau.edu.cn; Junaid Zafar, E-mail: jz_jaam@yahoo.com; #Correspondence Fengliang Jin, E-mail: jflbang@scau.edu.cn; Xiaoxia Xu, E-mail: xuxiaoxia111@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Yating Xu, Junaid Zafar, Liangjie Lin, Hongxin Wu, Zehong Kang, Jie Zhang, Rana Fartab Shoukat, Yongyue Lu, Rui Pang, Fengliang Jin, Xiaoxia Xu. 2026. MicroRNA-mediated modulation of immune genes facilitates Metarhizium anisopliae infection in the red imported fire ant, Solenopsis invicta. Journal of Integrative Agriculture, 25(1): 192-206.

Asgari S. 2011. Role of microRNAs in insect host–microorganism interactions. Frontiers in Physiology2, 48.

Asgari S. 2018. Chapter two-microRNAs as regulators of insect host–pathogen interactions and immunity. In: Smagghe G, ed., Advances in Insect Physiology. Academic Press, London, England. pp. 19–45.

Ayres J S, Schneider D S. 2008. A signaling protease required for melanization in Drosophila affects resistance and tolerance of Infections. PLoS Biology6, e305.

Bartel D P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell116, 281–297.

Betel D, Koppal A, Agius P, Sander C, Leslie C. 2010. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology11, R90.

Brutscher L M, Daughenbaugh K F, Flenniken M L. 2015. Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science10, 71–82.

Chen J, Zhou Y, Lei Y, Shi Q, Qi G, He Y, Lyu L. 2022. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pest Management Science78, 2964–2975.

Cremer S, Armitage S A, Schmid-Hempel P. 2007. Social immunity. Current Biology17, R693–R702.

Cui C, Wang Y, Li Y, Sun P, Jiang J, Zhou H, Liu J, Wang S. 2022. Expression of mosquito miRNAs in entomopathogenic fungus induces pathogen-mediated host RNA interference and increases fungal efficacy. Cell Reports41, 111527.

Etebari K, Asgari S. 2013. Conserved microRNA miR-8 blocks activation of the Toll pathway by upregulating Serpin 27 transcripts. RNA Biology10, 1356–1364.

Evans J D, Aronstein K, Chen Y P, Hetru C, Imler J L, Jiang H, Kanost M, Thompson G J, Zou Z, Hultmark D. 2006. Immune pathways and defence mechanisms in honey bees Apis melliferaInsect Molecular Biology15, 645–656.

Fang W, Azimzadeh P, Leger R J S. 2012. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Current Opinion in Microbiology15, 232–238.

Feldhaar H, Gross R. 2008. Immune reactions of insects on bacterial pathogens and mutualists. Microbes and Infection10, 1082–1088.

Freitak D, Knorr E, Vogel H, Vilcinskas A. 2012. Gender- and stressor-specific microRNA expression in Tribolium castaneumBiology Letters8, 860–863.

Friedländer M R, Mackowiak S D, Li N, Chen W, Rajewsky N. 2011. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research40, 37–52.

Fullaondo A, Lee S Y. 2012. Identification of putative miRNA involved in Drosophila melanogaster immune response. Developmental & Comparative Immunology36, 267–273.

Galbraith D A, Yang X, Niño E L, Yi S, Grozinger C. 2015. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera). PLoS Pathogens11, e1004713.

Geng T, Lu F, Wu H, Lou D, Tu N, Zhu F, Wang S. 2021. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassianaInsect Molecular Biology30, 102–112.

Gong Y, Ju C, Zhang X. 2015. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp. Fish & Shellfish Immunology46, 516–522.

Gorman M J, Paskewitz S M. 2001. Serine proteases as mediators of mosquito immune responses. Insect Biochemistry and Molecular Biology31, 257–262.

Guo R, Du Y, Zhou N H, Liu S Y, Xiong C L, Zheng Y Z, Fu Z M, Xu G J, Wang H P, Geng S H, Zhou D D, Chen D F. 2019. Comprehensive analysis of differentially expressed microRNAs and their target genes in the larval gut of Apis mellifera ligustica during the late stage of Ascosphaera apis stress. Acta Entomologica Sinica62, 49–60. (in Chinese)

Hillyer J F. 2016. Insect immunology and hematopoiesis. Developmental & Comparative Immunology58, 102–118.

Holmes V R, Johnston J S. 2021. The innate immune response of eusocial hymenopterans to viral pathogen challenge. Annals of the Entomological Society of America115, 141–147.

Holmes V R, Johnston J S. 2023. Differential gene expression of innate immune response genes consequent to Solenopsis invicta virus-3 infection. Genes14, 188.

Hong S, Guo Q, Wang W, Hu S, Fang F, Lv Y, Yu J, Zou F, Lei Z, Ma K, Ma L, Zhou D, Sun Y, Zhang D, Shen B, Zhu C. 2014. Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect Biochemistry and Molecular Biology55, 39–50.

Hu W, He G, Wang J, Hu Q. 2016. The effects of destruxin A on relish and rel gene regulation to the suspected immune-related genes of silkworm. Molecules22, 41.

Imler J L. 2014. Overview of Drosophila immunity: A historical perspective. Developmental & Comparative Immunology42, 3–15.

Liang M R, Shuang Y M, Deng J F, Peng L Y, Zhang S Q, Zhang C, Xu, Y J, Lu Y Y, Wang L. 2023. Toxicity and horizontal transfer of bifenthrin and dimefluthrin against the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), and the efficacy of their dust applications in the field. Journal of Integrative Agriculture, 22, 1465–1476.

Jain S, Rana V, Shrinet J, Sharma A, Tridibes A, Sunil S, Bhatnagar R K. 2014. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensiPLoS ONE9, e98402.

Kim S J, Lee J H, Kim J H, Yoon K A, Lee S H. 2023. Ingestion of antagomir or agomir of microRNA results in physiological changes and high mortality in Frankliniella occidentalisEntomologia Generalis43, 109–116.

Lai X, Wolkenhauer O, Vera J. 2016. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Research44, 6019–6035.

Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogasterAnnual Review of Immunology25, 697–743.

Lester P J, Buick K H, Baty J W, Felden A, Haywood J. 2019. Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant. Scientific Reports9, 5780.

Lewis B P, Burge C B, Bartel D P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20.

Li D, Liu Y, Pei C, Zhang P, Pan L, Xiao J, Meng S, Yuan Z, Bi X. 2017. miR-285–Yki/Mask double-negative feedback loop mediates blood–brain barrier integrity in DrosophilaProceedings of the National Academy of Sciences of the United States of America114, E2365–E2374.

Liu L, Wang D H, Zhao C C, Yan F M, Lei C L, Su L J, Zhang Y C, Huang Q Y, Tang Q B. 2023a. Transcriptomics reveals the killing mechanism by which entomopathogenic fungi manipulate the RNA expression profiles of termites and provides inspiration for green pest management. Journal of Agricultural and Food Chemistry71, 7152–7162.

Liu L, Yan F M, Zhao C C, Su L J, Huang Q Y, Tang Q B. 2023b. microRNAs shape social immunity: A potential target for biological control of the termite Reticulitermes chinensisJournal of Pest Science96, 265–279.

Lu H L, Leger R J S. 2016. Chapter seven-Insect immunity to entomopathogenic fungi. In: Lovett B, Leger R J S eds., Advances in Genetics. Academic Press, San Diego, CA, USA. pp. 251–285.

Lu T, Ji Y, Chang M, Zhang X, Wang Y, Zou Z. 2024. The accumulation of modular serine protease mediated by a novel circRNA sponging miRNA increases Aedes aegypti immunity to fungus. BMC Biology22, 7.

Lucas K J, Zhao B, Liu S, Raikhel A S. 2015. Regulation of physiological processes by microRNAs in insects. Current Opinion in Insect Science11, 1–7.

Mehmood N, Hassan A, Zhong X, Zhu Y, Ouyang G, Huang Q. 2023. Entomopathogenic fungal infection following immune gene silencing decreased behavioral and physiological fitness in Aedes aegypti mosquitoes. Pesticide Biochemistry and Physiology195, 105535.

Menchetti M, Schifani E, Alicata A, Cardador L, Sbrega E, Toro-Delgado E, Vila R. 2023. The invasive ant Solenopsis invicta is established in Europe. Current Biology33, R896–R897.

Moreira-Pinto C E, Coelho R R, Leite A G B, Silveira D A, de Souza D A, Lopes R B, Macedo L L P, Silva M C M, Ribeiro T P, Morgante C V, Antonino J D, Grossi-de-Sa M F. 2021. Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: A perspective to combine biocontrol and biotechnology. Pest Management Science77, 4054–4063.

Mukherjee K, Vilcinskas A. 2014. Development and immunity-related microRNAs of the lepidopteran model host Galleria mellonellaBMC Genomics15, 705.

Palmer W J, Duarte A, Schrader M, Day J P, Kilner R, Jiggins F M. 2016. A gene associated with social immunity in the burying beetle Nicrophorus vespilloidesProceedings of the Royal Society (B: Biological Sciences), 283, 20152733.

Qiu H L, Lu L H, Shi Q X, He Y R. 2014. Fungus exposed Solenopsis invicta ants benefit from grooming. Journal of Insect Behavior27, 678–691.

Qiu H L, Lu L H, Shi Q X, Tu C C, Lin T, He Y R. 2015. Differential necrophoric behaviour of the ant Solenopsis invicta towards fungal-infected corpses of workers and pupae. Bulletin of Entomological Research105, 607–614.

Qiu H L, Lu L H, Zalucki M, He Y R. 2016. Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invictaJournal of Invertebrate Pathology138, 24–29.

Richter J, Helbing S, Erler S, Lattorff H M G. 2012. Social context-dependent immune gene expression in bumblebees (Bombus terrestris). Behavioral Ecology and Sociobiology66, 791–796.

Robinson M D, McCarthy D J, Smyth G K. 2009. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140.

Sakamoto H, Goka K. 2021. Acute toxicity of typical ant control agents to the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Applied Entomology and Zoology56, 217–224.

Schmid-Hempel P. 2005. Evolutionary ecology of insect immune defenses. Annual Review of Entomology50, 529–551.

Scholte E J, Ng’Habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, Killeen G F, Knols B G. 2005. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science308, 1641–1642.

Singh C P. 2021. In vitro treatment of seroin proteins to BmNPV budded virions suppresses viral proliferation in Bombyx mori larvae and ectopic overexpression of host-miRNAs downregulates the expression of Seroin2 mRNA in BmN cells. International Journal of Tropical Insect Science41, 1485–1491.

Tschinkel W R. 2013. The Fire Ants. Harvard University Press, Cambridge, MA, USA.

Wang C, Wang S. 2017. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annual Review of Entomology62, 73–90.

Wang H C, Li L, Zhang J H, Yao Z H, Pang B P. 2024. MicroRNA miR-7-5p targets MARK2 to control metamorphosis in Galeruca dauricaComparative Biochemistry and Physiology (Part B: Biochemistry and Molecular Biology), 272, 110967.

Wang Y, Cui C, Wang G, Li Y, Wang S. 2021. Insects defend against fungal infection by employing microRNAs to silence virulence-related genes. Proceedings of the National Academy of Sciences of the United States of America118, e2023802118.

Wei G, Sun L, Li R, Li L, Xu J, Ma F. 2018. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection. Developmental & Comparative Immunology81, 210–224.

Wu H, Xu Y, Zafar J, Mandal S D, Lin L, Lu Y, Jin F, Pang R, Xu X. 2023. Transcriptomic analysis reveals the impact of the biopesticide Metarhizium anisopliae on the immune system of major workers in Solenopsis invictaInsects14, 701.

Xie J, Peng Y, Xia Y. 2021. Genome-wide identification and analysis of Nilaparvata lugens microRNAs during challenge with the entomopathogenic fungus Metarhizium anisopliaeJournal of Fungi7, 295.

Yan Y, Aumann R A, Haecker I, Schetelig M F. 2023. CRISPR-based genetic control strategies for insect pests. Journal of Integrative Agriculture22, 651–668.

Yang L, Yang L, Wang X, Peng C, Chen X, Wei W, Xu X, Ye G, Xu J. 2023. Toll and IMD immune pathways are important antifungal defense components in a pupal parasitoid, Pteromalus puparumInternational Journal of Molecular Sciences24, 14088.

Yang M, Wang Y, Jiang F, Song T, Wang H, Liu Q, Zhang J, Zhang J, Kang L. 2016. miR-71 and miR-263 jointly regulate target genes Chitin synthase and Chitinase to control locust molting. PLoS Genetics12, e1006257.

Zafar J, Wu H, Xu Y, Lin L, Kang Z, Zhang J, Zhang R, Lu Y, Jin F, Xu X. 2023. Transcriptomic analysis of Metarhizium anisopliae-induced immune-related long non-coding RNAs in polymorphic worker castes of Solenopsis invictaInternational Journal of Molecular Sciences24, 13983.

Zafar J, Zhang Y, Huang J, Freed S, Shoukat R F, Xu X, Jin F. 2021. Spatio-temporal profiling of Metarhizium anisopliae - Responsive microRNAs involved in modulation of Plutella xylostella immunity and development. Journal of Fungi7, 942.

Zhang S, Feng T, Ji J, Wang L, An C. 2022. Serine protease SP7 cleaves prophenoloxidase and is regulated by two serpins in Ostrinia furnacalis melanization. Insect Biochemistry and Molecular Biology141, 103699.

Zhang Y, Tian T, Zhang K, Zhang Y J, Wu Q J, Xie W, Guo Z J, Wang S L. 2023. Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticaeJournal of Integrative Agriculture22, 1809–1819.

Zhang W, Ortiz-Urquiza A, Keyhani N O. 2021. Altered expression of chemosensory and odorant binding proteins in response to fungal infection in the red imported fire ant, Solenopsis invictaFrontiers in Physiology12, . 596571

Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D, Xu L. 2015. MicroRNA-7: A promising new target in cancer therapy. Cancer Cell International15, 103.

Zhao T, Ren L, Li C, Liu L, Zou Y, Yan H, Zhan Y, Chang Y. 2022. MiR-7 regulates pathogen-induced immune response via PAK1 in the sea cucumber Apostichopus japonicusFrontiers in Immunology13, 927796.

Zhao Z M, Yin H T, Shen M M, Zhang S L, Chen Z K, Li T, Zhang Z D, Zhao W G, Guo X J, Wu P. 2022. Transcriptome of miRNA during inhibition of Bombyx mori nuclear polyhedrosis virus by geldanamycin in BmN cells. Archives of Insect Biochemistry and Physiology110, e21880.

Zheng X, Li S, Si Y, Hu J, Xia Y. 2020. Locust can detect β-1, 3-glucan of the fungal pathogen before penetration and defend infection via the Toll signaling pathway. Developmental & Comparative Immunology106, 103636.

Zhou Y, Liu Y, Yan H, Li Y, Zhang H, Xu J, Puthiyakunnon S, Chen X. 2014. miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication. Parasites & Vectors7, 488.

[1] Kai Wang, Longlong Sun, Mengdan Zhang, Shuting Chen, Guiying Xie, Shiheng An, Wenbo Chen, Xincheng Zhao. dsHaE93 shows a high potential for the pest control of Helicoverpa armigera by inhibiting larval-pupal metamorphosis and development of wing and ovary[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1916-1929.
[2] Wanying Zheng, Panyang Jiao, Xiaona Xu, Weihua Ma, J. Joe Hull, Hongxia Hua, Lizhen Chen. Identification of a TOR signaling pathway gene as a candidate target for reproductive management of Adelphocoris suturalis[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1529-1541.
[3] MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei . Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 170-177.
[4] ZHANG Can, SHAO Zhen-fang, HAN Yue-ye, WANG Xing-min, WANG Ze-qing, Peter Dennis Musa, QIU Bao-li, Shaukat Ali . Effects of Aschersonia aleyrodis on the life table and demographic parameters of Bemisia tabaci[J]. >Journal of Integrative Agriculture, 2018, 17(2): 389-396.
No Suggested Reading articles found!