Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1529-1541    DOI: 10.1016/j.jia.2024.08.005
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of a TOR signaling pathway gene as a candidate target for reproductive management of Adelphocoris suturalis

Wanying Zheng1*, Panyang Jiao1, Xiaona Xu1, Weihua Ma1, J. Joe Hull2, Hongxia Hua1, Lizhen Chen1#

1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2 Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA

 Highlights 
The target of rapamycin (TOR) signaling pathway plays a crucial role in Adelphocoris suturalis reproductive regulation.
RNAi-mediated knockdown of TOR-related genes of A. suturalis reduces its fertility.
A spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) system targeting TOR successfully suppresses ovarian development in A. suturalis.  
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

中黑盲蝽Adelphocoris suturalis是一种重要的杂食农业害虫。由于转Bt抗虫棉花商业化种植以及Bt棉田化学杀虫剂使用的减少,中黑盲蝽作为次要害虫发生日益加重。因此,研究新的可持续防控中黑盲蝽的有效方法迫在眉睫本研究通过注射雷帕霉素靶蛋白(TOR)信号通路抑制剂,发现TOR信号通路在中黑盲蝽的生殖调控中起着关键作用。基因沉默(RNAi)在病虫害防控中具有较大的应用潜力。本研究进一步通过基因克隆RNAi、实时荧光定量PCR(qPCR)等技术发现,分别沉默TOR信号通路基因TOR、脑Ras同源蛋白Rheb)和S6蛋白激酶(S6K能够显著降低该虫的繁殖力。此外,TOR基因双链RNAdsRNA)通过纳米递送系统处理中黑盲蝽成功抑制了该虫的卵巢发育。这些结果为了解中黑盲蝽的生殖调控奠定了理论基础,并为了高效防控中黑盲蝽提供了新的思路与RNAi靶标。



Abstract  

Adelphocoris suturalis is a polyphagous pest that is increasingly causing severe economic damage due to more frequent outbreaks.  The development of non-target resistance to commercial Bacillus thuringiensis (Bt) cotton has further exacerbated its pest status and amplified the need for more sustainable methods of control.  RNA interference (RNAi)-based pest management strategies, such as root soaking and transgenic plants that express dsRNAs, have proven to be reliable, eco-friendly pest control strategies.  To identify new RNAi targets for potential Asuturalis population control, we investigated the target of rapamycin (TOR) signaling pathway.  A critical role for this pathway in Asuturalis reproductive regulation was suggested by pharmacological analyses.  Subsequent RNAi-mediated knockdown of the Asuturalis TOR pathway genes TOR, Ras homolog enriched in the brain (Rheb), and ribosomal S6 kinase (S6K) reduced fertility.  Moreover, a spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) system targeting TOR successfully suppressed ovarian development, which demonstrates its effectiveness as a pest control target.  These results provide a critical foundation for understanding reproductive regulation in Asuturalis and introduce new candidates for RNAi-based Asuturalis management.


Keywords:  Adelphocoris suturalis       target of rapamycin (TOR) signaling        reproductive regulation        RNAi targets        nanocarrier-mediated RNAi  
Received: 18 January 2024   Accepted: 09 May 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32072428).
About author:  Wanying Zheng, E-mail: zwykk@webmail.hzau.edu.cn; Panyang Jiao, E-mail: 1653553450@qq.com; #Correspondence Lizhen Chen, E-mail: lzchen@mail.hzau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Wanying Zheng, Panyang Jiao, Xiaona Xu, Weihua Ma, J. Joe Hull, Hongxia Hua, Lizhen Chen. 2025. Identification of a TOR signaling pathway gene as a candidate target for reproductive management of Adelphocoris suturalis. Journal of Integrative Agriculture, 24(4): 1529-1541.

Baulcombe D. 2004. RNA silencing in plants. Nature431, 356–363.

Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology25, 1322–1326.

Cagliari D, Dias N P, Galdeano D M, Dos Santos E A, Smagghe G, Zotti M J. 2019. Management of pest insects and plant diseases by non-transformative RNAi. Frontiers in Plant Science10, 1319.

Carpenter V K, Drake L L, Aguirre S E, Price D P, Rodriguez S D, Hansen I A. 2012. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Journal of Insect Physiology58, 513–522.

Chakrabarti S, Liehl P, Buchon N, Lemaitre B. 2012. Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe12, 60–70.

Christiaens O, Swevers L, Smagghe G. 2014. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides53, 307–314.

Dames S A, Mulet J M, Rathgeb-Szabo K, Hall M N, Grzesiek S. 2005. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. Journal of Biological Chemistry280, 20558–20564.

Deshpande R, Lee B, Qiao Y, Grewal S S. 2022. TOR signalling is required for host lipid metabolic remodelling and survival following enteric infection in DrosophilaDisease Models & Mechanisms15, dmm049551.

Fire A, Xu S Q, Montgomery M K, Kostas S A, Driver S E, Mello C C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegansNature391, 806–811.

Gasser C S, Fraley R T. 1989. Genetically engineering plants for crop improvement. Science244, 1293–1299.

Groenewoud M J, Zwartkruis F J T. 2013. Rheb and Rags come together at the lysosome to activate mTORC1. Biochemical Society Transactions41, 951–955.

Hanks S K, Quinn A M, Hunter T. 1988. The prothin-kinase family conserved features and deduced phylogeny of the catalytic domains. Science241, 42–52.

Hannon G J. 2002. RNA interference. Nature418, 244–251.

Hansen I A, Attardo G M, Park J H, Peng Q, Raikhel A S. 2004. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proceedings of the National Academy of Sciences of the United States of America101, 10626–10631.

Hansen I A, Attardo G M, Roy S G, Raikhel A S. 2005. Target of rapamycin-dependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito. Journal of Biological Chemistry280, 20565–20572.

Raikhel A. 2005. Vitellogenesis of disease vectors, from physiology to genes. In: Marquardt W, ed., Biology of Disease Vectors. Elsevier Publishing, London. pp. 329–346.

James C. 2015. 20th Anniversary (1996 to 2015) of the Global Commercialization of Biotech Crops and Biotech Crop Highlights in 2015. ISAAA Brief No. 51. International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, NY.

Jiang Y Y, Lu Y H, Zeng J. 2015. Forecast and Management of Mirid Bugs in Multiplie Agroecosystems of China. China Agriculture Press, China. pp. 16–25. (in Chinese)

Kumar P, Pandit S S, Steppuhn A, Baldwin I T. 2014. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proceedings of the National Academy of Sciences of the United States of America111, 1245–1252.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Li M S, Ma Z Z, Peng M, Li L, Yin M Z, Yan S, Shen J. 2022. A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug. Nano Today43, 101452.

Liang S J, Luo J, Alariqi M, Xu Z P, Wang A L, Zafar M N, Ren J, Wang F Q, Liu X F, Xin Y F, Xu H N, Guo W F, Wang Y Q, Ma W H, Chen L Z, Lindsey K, Zhang X L, Jin S X. 2021. Silencing of an LIM gene in cotton exhibits enhanced resistance against Apolygus lucorumJournal of Cellular Physiology236, 5921–5936.

Liu S, Jaouannet M, Dempsey D A, Imani J, Coustau C, Kogel K H. 2020. RNA-based technologies for insect control in plant production. Biotechnology Advances39, 107463.

Liu W, Li Y, Zhu L, Zhu F, Lei C L, Wang X P. 2016. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringiInsect Biochemistry and Molecular Biology74, 50–60.

Lu C, Zhao B, Zhu F, Wei T T, Zhou B, Lei C L. 2010. Effects of three nutritional conditions on the development of Adelphocoris suturalis Jakovlev. Journal of Huazhong Agricultural University29, 557–559. (in Chinese)

Lu K, Chen X, Liu W T, Zhou Q. 2016. TOR pathway-mediated juvenile hormone synthesis regulates nutrient-dependent female reproduction in Nilaparvata lugens (Stål). International Journal of Molecular Sciences17, 438.

Lu Y H, Wu K M, Jiang Y Y, Xia B, Li P, Feng H Q, Wyckhuys K A G, Guo Y Y. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science328, 1151–1154.

Lu Y H, Wu K M, Wyckhuys K A, Guo Y Y. 2009. Comparative flight performance of three important pest Adelphocoris species of Bt cotton in China. Bulletin of Entomological Research99, 543–550.

Luo J, Liang S J, Li J Y, Xu Z P, Li L, Zhu B Q, Li Z, Lei C L, Lindsey K, Chen L Z, Jin S X, Zhang X L. 2017. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme A reductase in cotton. New Phytologist215, 1173–1185.

Luo J, Liu X Y, Liu L, Zhang P Y, Chen L J, Gao Q, Ma W H, Chen L Z, Lei C L. 2014. De novo analysis of the Adelphocoris suturalis Jakovlev metathoracic scent glands transcriptome and expression patterns of pheromone biosynthesis-related genes. Gene551, 271–278.

Luo J, Ma C, Li Z, Zhu B Q, Zhang J, Lei C L, Jin S X, Hull J J, Chen L Z. 2018. Assessment of suitable reference genes for qRT-PCR analysis in Adelphocoris suturalisJournal of Integrative Agriculture17, 2745–2757.

Ma Z Z, Zheng Y, Chao Z J, Chen H T, Zhang Y H, Yin M Z, Shen J, Yan S. 2022. Visualization of the process of a nanocarrier-mediated gene delivery: Stabilization, endocytosis and endosomal escape of genes for intracellular spreading. Journal of Nanobiotechnology20, 124.

Maestro J L, Cobo J, Belles X. 2009. Target of rapamycin (TOR) mediates the transduction of nutritional signals into juvenile hormone production. Journal of Biological Chemistry284, 5506–5513.

Markaki M, Tavernarakis N. 2013. Metabolic control by target of rapamycin and autophagy during ageing - A mini-review. Gerontology59, 340–348.

Mehlhorn S, Hunnekuhl V S, Geibel S, Nauen R, Bucher G. 2021a. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: A brief guide. Frontiers in Zoology18, 60.

Mehlhorn S, Ulrich J, Baden C U, Buer B, Maiwald F, Lueke B, Geibel S, Bucher G, Nauen R. 2021b. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Pesticide Biochemistry and Physiology176, 104870.

Niu J, Taning C N T, Christiaens O, Smagghe G, Wang J J. 2018. Rethink RNAi in insect pest control: Challenges and perspectives. Crop Protection55, 1–17.

Parthasarathy R, Palli S R. 2011. Molecular analysis of nutritional and hormonal regulation of female reproduction in the red flour beetle, Tribolium castaneumInsect Biochemistry and Molecular Biology41, 294–305.

Roy S, Saha T T, Zou Z, Raikhel A S. 2018. Regulatory pathways controlling female insect reproduction. Annual Review of Entomology63, 489–511.

Saucedo L J, Gao X S, Chiarelli D A, Li L, Pan D, Edgar B A. 2003. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biology5, 566–571.

Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols3, 1101–1108.

Smykal V, Raikhel A S. 2015. Nutritional control of insect reproduction. Current Opinion in Insect Science11, 31–38.

Song H F, Zhang J Q, Li D Q, Cooper A M W, Silver K, Li T, Liu X J, Ma E B, Zhu K Y, Zhang J Z. 2017. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochemistry and Molecular Biology86, 68–80.

Sun L N, Meng J Y, Wang Z, Lin S Y, Shen J, Yan S. 2024. Research progress of aphid immunity system: Potential effective target for green pest management. Insect Science31, 1662–1674.

Tabashnik B E, Brevault T, Carriere Y. 2013. Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnology31, 510–521.

Wei L Y, Zhang L J, Liu N, Gao X, W Liu X N. 2021. Effect of RNAi targeting CYP6CY3 on the growth, development and insecticide susceptibility of Aphis gossypii by using nanocarrier-based transdermal dsRNA delivery system. Pesticide Biochemistry and Physiology177, 104878.

Wittinghofer A, Pai E F. 1991. The structure of Ras protein: A model for a universal molecular switch. Trends in Biochemical Sciences16, 382–387.

Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science321, 1676–1678.

Yan S, Qian J, Cai C, Ma Z Z, Li J H, Yin M Z, Ren B Y, Shen J. 2020. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycinesJournal of Pest Science93, 449–459.

Yan S, Ren B Y, Shen J. 2021. Nanoparticle-mediated double-stranded RNA delivery system: A promising approach for sustainable pest management. Insect Science28, 21–34.

Zha W J, Peng X X, Chen R Z, Du B, Zhu L L, He G C. 2011. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugensPLoS ONE6, e20504.

Zhang J, Khan S A, Hasse C, Ruf S, Heckel D G, Bock R. 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science347, 991–994.

Zhang W N, Liu B, Liang G M, Lu Y H. 2016. Flowers promote ovarian development and vitellogenin gene expression in Apolygus lucorum (Heteroptera: Miridae). Arthropod-Plant Interactions10, 113–119.

Zhang Y H, Ma Z Z, Zhou H, Chao Z J, Yan S, Shen J. 2022. Nanocarrier-delivered dsRNA suppresses wing development of green peach aphids. Insect Science29, 669–682.

Zhu J, Dong Y C, Li P, Niu C Y. 2016. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalisScientific Reports6, 28697.

No related articles found!
No Suggested Reading articles found!