Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 180-191    DOI: 10.1016/j.jia.2025.04.023
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Performance and functional responses of the thelytokous and arrhenotokous strains of Neochrysocharis formosa to Tuta absoluta, a globally severe tomato pest 

Guifen Zhang*#, Hao Wang*, Yibo Zhang*, Xiaoqing Xian, Cong Huang, Wanxue Liu, Fanghao Wan

State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory for Prevention and Control of Invasive Alien Species of Ministry of Agriculture and Rural Affairs/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
 Highlights 
The thelytokous (TH) and arrhenotokous (AR) strains preferentially parasitize and attack 1st instar host larvae over later instars.
Variations in host-killing by N. formosa produce distinct functional responses to T. absoluta.
Parasitism by TH and AR and host-stinging by TH display type III functional responses.
Host-feeding by TH and AR and host-stinging by AR display type II functional responses.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

芙新姬小蜂Neochrysocharis formosa(膜翅目:姬小蜂科)为本地寄生蜂,具有孤雌产雌和两性生殖两个品系,对外来入侵害虫番茄潜叶Tuta absoluta(鳞翅目:麦蛾科)具有较好的生防潜力。本研究通过选择性实验(包括5种寄主龄期比例)评价两种品系芙新姬小蜂对番茄潜叶蛾的控害行为和寄主偏好性;以7个不同种群密度(5-40头)的1龄幼虫为研究对象,评价两种品系芙新姬小蜂的功能反应。寄主控害行为和龄期选择性实验结果表明,随1龄幼虫比例的增加,两种品系寄生蜂对番茄潜叶蛾幼虫的致死率明显增加;与较高龄期幼虫相比,两种品系芙新姬小蜂更倾向于产卵寄生、寄主取食和叮蛰致死1龄寄主幼虫,而且孤雌产雌品系较两性生殖品系对番茄潜叶蛾的控害能力更强。功能反应评价结果显示,两种品系芙新姬小蜂的控害率与寄主密度呈正相关关系;其中,两种品系寄生蜂的产卵寄生行为、以及孤雌产雌品系的寄主叮蛰致死行为III型功能反应,而两种品系寄生蜂的寄主取食行为、以及两性生殖品系的寄主叮蛰致死行为为II型功能反应,表明在番茄生态系统早期建立孤雌产雌品系芙新姬小蜂可以提高对番茄潜叶蛾的控制作用。研究结果对明确芙新姬小蜂孤雌产雌品系和两性生殖品系的功能特性动态具有重要指导意义,并且可以为制定世界性重大入侵害虫—番茄潜叶蛾的有效生物防治方案提供理论支撑。



Abstract  

The native thelytokous (TH) and arrhenotokous (AR) strains of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae) are promising biocontrol agents against the invasive tomato pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).  This study assessed the performance and preferences of these strains in choice experiments involving five host instar ratios and evaluated their functional responses to seven densities of 1st instar larvae (5 to 40 hosts).  In host-attacking behavior assays, an increasing proportion of 1st instar larvae led to a significant rise in host mortality rates for both strains.  Both strains exhibited strong preferences for parasitizing and attacking 1st instar larvae over later instars, with the TH strain demonstrating significantly greater host-killing efficacy than the AR strain.  Functional response experiments revealed that the attack rates of both strains were positively correlated with host density.  Parasitism by both strains and host-stinging behavior by the TH strain showed type III functional responses, while host-feeding by both strains and host-stinging by the AR strain followed type II functional responses.  Early establishment of the TH strain in tomato agroecosystems could enhance the management of Tabsoluta.  These findings provide critical insights into the functional dynamics of the TH and AR strains of Nformosa that can inform the development of effective biocontrol programs for this globally significant pest.

Keywords:  tomato leafminer       Eulophidae        Gelechiidae        idiobiont endo-parasitoid        choice experiment        biological control  
Received: 06 January 2025   Accepted: 25 March 2025 Online: 18 April 2025  
Fund: 

This work was supported by the National Key Research and Development Project of China (2021YFD1400200 and 2017YFC1200600), the Yunnan Biodiversity Conservation Foundation Program, China (202301AT070485), and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (caascx-2021–2025-IAS and caas-zdrw202203).  

About author:  #Correspondence Guifen Zhang, Tel: +86-10-82109572, E-mail: zhangguifen@caas.cn * These authors contributed equally to this study.

Cite this article: 

Guifen Zhang, Hao Wang, Yibo Zhang, Xiaoqing Xian, Cong Huang, Wanxue Liu, Fanghao Wan. 2026. Performance and functional responses of the thelytokous and arrhenotokous strains of Neochrysocharis formosa to Tuta absoluta, a globally severe tomato pest . Journal of Integrative Agriculture, 25(1): 180-191.

Arakaki N, Kinjo K. 1998. Notes on the parasitoid fauna of the serpentine leafminer Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) in Okinawa, southern Japan. Applied Entomology and Zoology33, 577–581.

Biondi A, Guedes N R C, Wan F H, Desneux N. 2018. Ecology, worldwide spread, and management of the invasive south American tomato pinworm, Tuta absoluta: Past, present, and future. Annual Review of Entomology, 63, 239–258.

Bodino N, Ferracini C, Tavella L. 2019. Functional response and age-specific foraging behaviour of Necremnus tutae and Ncosmopterix, native natural enemies of the invasive pest Tuta absoluta in Mediterranean area. Journal of Pest Science92, 1467–1478.

Brodeur J, Vet L E M. 1995. Relationships between parasitoid and host range and host defense: A comparative study of egg encapsulation in two related parasitoid species. Physiological Entomology20, 7–12.

Cabello T, Jaimez R, Pascual F. 1994. Spatial and temporal distribution of Liriomyza spp. and their parasitoids on horticultural crops in greenhouses of Southern Spain (Diptera: Agromyzidae). Boletín de Sanidad Vegetal Plagas20, 445–455.

Chang P E C, Metz M A. 2021. Classification of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae: Gelechiinae: Gnorimoschemini) based on cladistic analysis of morphology. Proceedings of the Entomological Society of Washington123, 41–54.

Chen X, Wong S W K, Stansly P A. 2016. Functional response of Tamarixia radiata (Hymenoptera: Eulophidae) to densities of its host, Diaphorina citri (Hemiptera: Psylloidea). Annals of the Entomological Society of America109, 432–437.

Cherif A, Attia-Barhoumi S, Mansour R, Zappalà L, Grissa-Lebdi K. 2019. Elucidating key biological parameters of Tuta absoluta on different host plants and under various temperature and relative humidity regimes. Entomologia Generalis39, 1–7.

Cocco A, Serra G, Lentini A, Deliperi S, Delrio G. 2015. Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops. Pest Management Science71, 1311–1323.

Cornell H V, Hawkins B A. 1993. Accumulation of native parasitoid species on introduced herbivores: A comparison of hosts as natives and hosts as invaders. The American Naturalist141, 847–865.

Cook J M. 1993. Sex determination in the Hymenoptera: A review of models and evidence. Heredity71, 421–435.

Dannon E A, Tamò M, Huis A, Dicke M. 2010. Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrataBioControl55, 363–378.

Dehliz A, Guénaoui Y. 2015. Natural enemies of Tuta absoluta (Lepidoptera: Gelechiidae) in Oued Righ Region, an arid area of Algeria. Academic Journal of Entomology8, 72–79.

Desneux N, Han P, Mansour R, Arno J, Brévault T, Campos M R, Chailleux A, Guedes R N C, Karimi J, Konan K A J, Lavoir A V, Luna M G, Perez-Hedo M, Urbaneja A, Verheggen F J, Zappalà L, Abbes K, Ali A, Bayram Y, Cantor F, et al. 2022. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. Journal of Pest Science95, 17–39.

Desneux N, Wajnberg E, Wyckhuys K A G, Burgio G, Arpaia S, Narváez-Vasquez C A. 2010. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83, 197–215.

Fellowes M D E, Van Alphen J J M, Jervis M A. 2005. Foraging behaviour. In: Jervis M A, ed., Insects as Natural EnemiesA Practical Perspective. Springer, Berlin. pp. 1–72.

Fernández-Arhex V, Corley J C. 2003. The functional response of parasitoids and its implications for biological control. Biocontrol Science and Technology13, 403–413.

Ferracini C, Bueno V H P, Dindo M L, Ingegno B L, Luna M G, Gervassio N G S, Sánchez N E, Siscaro G, van Lenteren J C, Zappalà L, Tavella L. 2019. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America. Biocontrol Science and Technology29, 578–609.

Ferracini C, Ingegno B L, Navone P, Ferrari E, Mosti M, Tavella L, Alma A. 2012. Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. Journal of Economic Entomology105, 1311–1319.

Fu K Y, Li A M, Ding X H, Jia Z Z, Ahmat T, Rouzi A, Feng H Z, Li X W, Guo W C. 2023. The Effect of different ecological factors on Trichogramma pintoi (Voegelé) parasitizing eggs of tomato leafminer, Phthorimaea absoluta (Meyrick). Chinese Journal of Biological Control39, 507–513. (in Chinese)

Gabarra R, Arnó J, Lara L, Verdú M J, Ribes A, Beitia F, Urbaneja A, Téllez M M, Mollá O, Riudavets J. 2014. Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish Mediterranean Coast. BioControl59, 45–54.

Garay J, Sebestyén Z, Varga Z, Gámez M, Torres A, Belda J E, Cabello T. 2015. A new multistage dynamic model for biological control exemplified by the host–parasitoid system Spodoptera exiguaChelonus oculatorJournal of Pest Science88, 343–358.

Glantz S A, Slinker B K, Neilands T B. 1990. Primer of Applied Regression and Analysis of Variance. 3rd ed. McGraw-Hill AccessMedicine, McGraw-Hill Education LLC, New York.

Godfray H C J. 1994. Parasitoids: Behavioral and evolution­ary ecology. Vol. 67. Princeton university press. [2024-12-20]. https://doi.org/10.1515/9780691207025

Guedes R N C, Roditakis E, Campos M R, Haddi K, Bielza P, Siqueira H A A, Tsagkarakou A, Vontas J, Nauen R. 2019. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. Journal of Pest Science92, 1329–1342.

Guleria P, Sharma P L, Verma S C, Chandel R S. 2020. Life history traits and host-killing rate of Neochrysocharis formosa on Tuta absolutaBioControl65, 401–411.

Guleria P, Sharma P L, Verma S C, Chandel R S, Sharma N. 2021. Functional response of Neochrysocharis formosa to Tuta absolutaBiocontrol Science and Technology31, 252–264.

Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F, Saji A, Esenali U T, Jalilov A, Ali A, Shashank P R, Ismoilov K, Lu Z Z, Wang S, Zhang G F, Wan F H, Biondi A, Desneux N. 2019. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. Journal of Pest Science92, 1317–1327.

Han P, Zhang Y B, Arnó J, Mansour R. 2024. Research toward enhancing integrated management of Tuta absoluta, an ongoing invasive threat in Afro-Eurasia. Entomologia Generalis44, 263–267.

Hassell M P. 2000. Host–parasitoid population dynamics. Journal of Animal Ecology69, 543–566.

Hassell M P, Lawton J H, Beddington J R. 1977. Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology46, 249–262.

Hebert P D N, Cywinska A, Ball S L, deWaard J R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London (Series B: Biological Sciences), 270, 313–321.

Heimpel G E, Lundgren J G. 2000. Sex ratios of commercially reared biological control agents. Biological Control19, 77–93.

Holling C S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist91, 385–398.

Jervis M A, Ellers J, Harvey J A. 2008. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology53, 361–385.

Jervis M A, Hawkins B A, Kidd N A C. 1996. The usefulness of destructive host feeding parasitoids in classical biological control: Theory and observation conflict. Ecological Entomology21, 41–46.

Jiang Z X, Zhou S W, Sun Y, Zou K, Li T A, Zhang J L, Chen G H, Zhang X M. 2024. Assessment of the suitability of three native Trichogramma species for biological control of Tuta absoluta in China. Entomologia Generalis, 44, 367–375.

Juliano S A. 2001. Nonlinear curve fitting: Predation and functional response curves. In: Scheiner S M, Gurevitch J, eds., Design and Analysis of Ecological Experiments. 2nd ed. Oxford University Press, Oxford. pp. 178–196.

Kant R, Minor M A, Trewick S A. 2012. Fitness gain in a koinobiont parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) by parasitising hosts of different ages. Journal of Asia-Pacific Entomology15, 83–87.

Kidd D, Amarasekare P. 2012. The role of transient dynamics in biological pest control: Insights from a host–parasitoid community. Journal of Animal Ecology81, 47–57.

Laumann R A, Moraes M C B, Pareja M, Alarcão G C, Botelho A C, Maia A H N, Leonardecz E, Borges M. 2008. Comparative biology and functional response of Trissolcus spp. (Hymenoptera: Scelionidae) and implications for stink bugs (Hemiptera: Pentatomidae) biological control. Biological Control44, 32–41.

Li J, Coudron T A, Pan W, Liu X, Lu Z, Zhang Q. 2006. Host age preference of Microplitis mediator (Hymenoptera: Braconidae), an endoparasitoid of Mythimna separata (Lepidoptera: Noctuidae). Biological Control39, 257–261.

Li P, Ma D Y, Ge Z Y, Wang S Y, Sun Z W, Zhang D X, Huang J X, Zhang G F, Guo Y W. 2025. Occurrence and damage of tomato leaf miner Tuta absoluta in China and application of prevention and control techniques. China Plant Protection45, 48–53. (in Chinese)

Li X W, Chen T T, Chen L M, Ren J, Ullah F, Yi S W, Pan Y H, Zhou S X, Guo W C, Fu K Y, Li Y X, Lu Y B. 2024. Trichogramma chilonis is a promising biocontrol agent against Tuta absoluta in China: Results from laboratory and greenhouse experiments. Entomologia Generalis44, 357–365.

Lietti M M M, Botto E, Alzogaray R A. 2005. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology34, 113–119.

Liu W X, Wang W X, Zhang Y B, Wang W, Lu S L, Wan F H. 2015. Adult diet affects the life history and host-killing behavior of a host-feeding parasitoid. Biological Control81, 58–64.

Luna M G, Wada V I, La Salle J, Sánchez N E. 2011. Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a newly recorded parasitoid of the tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in Argentina. Neotropical Entomology40, 412–414.

Neter J, Wasserman W, Kutner M H. 1974. Applied Linear Statistical ModelsRegressionAnalysis of Varianceand Experimental Designs. 3rd ed. Richard D. Irwin, Homewood, California.

Okuyama T. 2013. On selection of functional response models: Holling’s models and more. BioControl, 58, 293–298.

van Roermund H J W, van Lenteren J C, Rabbinge R. 1997. Analysis of foraging behavior of the whitefly parasitoid Encarsia formosa on leaf: a simulation study. Biological Control8, 22–36.

Sagarra L A, Vincent C, Peters N F, Stewart R K. 2000. Effect of host density, temperature, and photoperiod on the fitness of Anagyrus kamali, a parasitoid of the hibiscus mealybug Maconellicoccus hirsutusEntomologia Experimentalis et Applicata96, 141–147.

Sivinski J. 2013. Augmentative biological control: Research and methods to help make it work. CAB Reviews8, 026.

Soares M A, Campos M R. 2020. Phthorimaea absoluta (tomato leafminer). Commonwealth agricultural bureaux international compendium, data last updated on 6 February 2025. [2025-3-21]. https://doi.org/10.1079/cabicompendium.49260

Sohrabi F, Lotfalizadeh H, Salehipour H. 2014. Report of a larval parasitoid of Tuta absolutaJournal of Plant Protection Research54, 306–307.

Stouthamer R. 1993. The use of sexual versus asexual wasps in biological control. Entomophaga38, 3–6.

Strand M R, Pech L L. 1995. Immunological basis for compatibility in parasitoid-host relationships. Annual Review of Entomology40, 31–56.

Tang Q Y, Zhang C X. 2013. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science20, 254–260.

Tazerouni Z, Talebi A A, Rezaei M. 2019. Functional response of parasitoids: Its impact on biological control. In: Donnelly E, ed., ParasitoidsBiologyBehavior and Ecology. Nova Science Publishers, New York, USA. pp. 35–58.

Tryon E H, Poe S L. 1981. Developmental rates and emergence of vegetable leafminer pupae and their parasites reared from celery foliage. Florida Entomologist, 64, 477–483.

Urbaneja A, Desneux N, Gabarra R, Arnó J, Parra J R P. 2013. Biology, ecology and management of the south American tomato pinworm, Tuta absoluta. In: Peña J E, ed., Potential Invasive Pests of Agricultural Crops. Commonwealth Agricultural Bureaux International Invasives Series, Oxfordshire. pp. 98–125.

Wang H, Gu Y J, Song R R, Zhang C, Liu W X, Wan F H, Desneux N, Zhang G F, Zhang Y B. 2024. Thelytokous strains have better biocontrol potential than arrhenotokous strains: The parasitoid Neochrysocharis formosa on the invasive tomato leafminer Tuta absoluta as a case study. Entomologia Generalis44, 377–384.

Wang S Y, Niu Y J, Tang R, Liang N N, Liu T X. 2016. Feeding and parasitic functional responses of the parasitoid Aphelinus asychis Walker to green peach aphid Myzus persicae (Sulzer). Journal of Plant Protection43, 267–274. (in Chinese)

Wang W, Wang W X, Liu W X, Cheng L S, Wan F H. 2012. Research advances on biological characteristics and application of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae). Chinese Journal of Biological Control28, 575–582. (in Chinese)

Weintraub P G, Scheffer S J, Visser D, Valladares G, Correa A S, Shepard B M, Rauf A, Murphy S T, Mujica N, MacVean C, Kroschel J, Kishinevsky M, Joshi R C, Johansen N S, Hallett R H, Civelek H S, Chen B, Metzler H B. 2017. The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): Understanding its pest status and management globally. Journal of Insect Science17, 28.

Wen J Z, Lei Z R, Wang Y. 1999. Introduction to parasitoids of vegetable leafminer in China: Chrysocharis pentheus (Walker) and Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae). Plant Protection, 25, 39–40. (in Chinese)

Xu X F, Hoffmann A A, Umina P A, Coquilleau M P, Gill A, Ridland P M. 2022. Identification of two leafminer parasitoids (Hymenoptera: Eulophidae), Neochrysocharis formosa and Proacrias sp. from Australia, with both showing thelytoky and infection by Rickettsia. Austral Entomology61, 358–369.

Xuan J L, Xiao Y, Ye F Y, Zhang Y B, Tao S X, Guo J Y, Liu W X. 2022. High temperatures do not decrease biocon­trol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers. Journal of Integrative Agriculture21, 1722–1730.

Yang Y M, Du S J, Liu W X, Pan L T, Yang L Q, Guo J Y. 2020. Comparison of life history during immature stage between thelytokous and arrhenotokous strains of Neochrysocharis formosaPlant Protection46, 104–109, 117. (in Chinese)

Yang Y M, Xuan J L, Ye F Y, Guo J Y, Yang L Y, Liu W X. 2017. Molecular identification of the thelytokous strain of Neochrysocharis formosa (Hymenoptera: Eulophidae) newly found in China and detection of its endosymbiont RickettsiaActa Entomologica Sinica60, 582–593. (in Chinese)

Yazdani M, Keller M. 2016. The shape of the functional response curve of Dolichogenidea tasmanica (Hymenoptera: Braconidae) is affected by recent experience. Biological Control97, 63–69.

Ye F Y, Yang Y M, Zhang Y B, Pan L T, Yefremova Z, Yang L Y, Guo J Y, Liu W X. 2023. The thelytokous strain of the parasitoid Neochrysocharis formosa outperforms the arrhenotokous strain in reproductive capacity and biological control of agromyzid leafminers. Pest Management Science79, 729–740.

Zappalà L, Biondi A, Alma A, Al-Jboory I J, Arnó J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Aznar R V, Urbaneja A, Desneux N. 2013. Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. Journal of Pest Science86, 635–647.

Zhang G F, Ma D Y, Wang Y S, Gao Y H, Liu W X, Zhang R, Fu W J, Xian X Q, Wang J, Kuang M, Wan F H. 2020. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China. Journal of Integrative Agriculture, 19, 1912–1917.

Zhang G F, Xian X Q, Zhang Y B, Liu W X, Liu H, Feng X D, Ma D Y, Wang Y S, Gao Y H, Zhang R, Li Q H, Wan F H, Fu W J, Wang J, Kuang M, Yang W J, Rao X, Gao Y, Dai A M. 2021. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: Geographic and potential host range expansion. Pest Management Science77, 5475–5488.

Zhang G F, Zhang Y B, Xian X Q, Liu W X, Li P, Liu W C, Liu H, Feng X D, Lü Z C, Wang Y S, Huang C, Guo J Y, Wan F H, Ma D Y, Zhang X M, Gui F R, Li Y H, Luo R, Wang H Q, Wang J. 2022. Damage of an important and newly invaded agricultural pest, Phthorimaea absoluta, and its prevention and management measures. Plant Protection48, 51–58. (in Chinese)

Zhang G F, Yin H J, Wang Y S, Li Z J, Bi S Y, Wang R, Liu W X, Wan F H. 2023. Determination of larval instars and duration of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chinese Journal of Biological Control39, 340–345. (in Chinese)

[1] ZHANG Gui-fen, MA De-ying, WANG Yu-sheng, GAO You-hua, LIU Wan-xue, ZHANG Rong, FU Wen-jun, XIAN Xiao-qing, WANG Jun, KUANG Meng, WAN Fang-hao. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1912-1917.
No Suggested Reading articles found!