Asrol M, Utama D N, Adeta F. 2023. Real-time oil palm fruit grading system using smartphone and modified YOLOv4. IEEE Access, 11, 59758–59773.
Bebber D P, Ramotowski M A, Gurr S J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3, 985–988.
Benjumea A, Teeti I, Cuzzolin F, Bradley A. 2021. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. Arxiv, https://doi.org/10.48550/arXiv.2112.11798.
Bowling R D, Brewer M J, Kerns D L, Gordy J, Seiter N, Elliott N E, Buntin G D, Way M, Royer T, Biles S. 2016. Sugarcane aphid (Hemiptera: Aphididae): A new pest on sorghum in North America. Journal of Integrated Pest Management, 7, 1–13.
Cai J, Xiao D, Lv L, Ye Y. 2019. An early warning model for vegetable pests based on multidimensional data. Computers and Electronics in Agriculture, 156, 217–226.
Cai Z, Vasconcelos N.2018. Cascade R-CNN: Delving into high quality object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9, 6154–6162.
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav A L, Rani L. 2024. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. Journal of Environmental Management, 354, 120326.
Chen M, Chen Z, Luo L, Tang Y, Cheng J, Wei H, Wang J. 2024. Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard. Computers and Electronics in Agriculture, 219, 108774.
Chollet F.2017. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3, 1503–2251.
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv, https://doi.org/10.48550/arXiv.2010.11929
Fahad L G, Tahir S F, Rasheed U, Saqib H, Hassan M, Alquhayz H. 2022. Fruits and vegetables freshness categorization using deep learning. CMC-Computers Materials & Continua, 71, 5083–5098.
Genaev M A, Komyshev E G, Shishkina O D, Adonyeva N V, Karpova E K, Gruntenko N E, Zakharenko L P, Koval V S, Afonnikov D A. 2022. Classification of fruit flies by gender in images using smartphones and the YOLOv4-tiny neural network. Mathematics, 10, 295–313.
Hajjar M J, Ahmed N, Alhudaib K A, Ullah H. 2023. Integrated insect pest management techniques for rice. Sustainability, 15, 4499.
Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C.2020. Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3, 1577–1586.
He K, Zhang X, Ren S, Sun J.2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2, 770–778.
Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. ArXiv, https://doi.org/10.48550/arXiv.1704.04861
Hu Y, Wang Q, Wang C, Qian Y, Xue Y, Wang H. 2024. MACNet: A more accurate and convenient pest detection network. Electronics, 13, 1068.
Javaid M, Haleem A, Singh R P, Suman R. 2022. Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164.
Jiao L, Xie C, Chen P, Du J, Li R, Zhang J. 2022. Adaptive feature fusion pyramid network for multi-classes agricultural pest detection. Computers and Electronics in Agriculture, 195, 106827–106835.
Karar M E, Alsunaydi F, Albusaymi S, Alotaibi S. 2021. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60, 4423–4432.
Kumar G S, Shetty S D.2021. Application development for mask detection and social distancing violation detection using convolutional neural networks. Proceedings of the 23rd International Conference on Enterprise Information Systems, 1, 760–767.
Leybourne D J, Storer K E, Marshall A, Musa N, Telling S, Abel L, White S, Ellis S, Yang P, Berry P M. 2024. Thresholds and prediction models to support the sustainable management of herbivorous insects in wheat. A review. Agronomy for Sustainable Development, 44, 29.
Li H, Gu Z, He D, Wang X, Huang J, Mo Y, Li P, Huang Z, Wu F. 2024. A lightweight improved YOLOv5s model and its deployment for detecting pitaya fruits in daytime and nighttime light-supplement environments. Computers and Electronics in Agriculture, 220, 108914.
Li R, Wang R, Xie C, Liu L, Zhang J, Wang F, Liu W. 2019. A coarse-to-fine network for aphid recognition and detection in the field. Biosystems Engineering, 187, 39–52.
Li W, Wang D, Li M, Gao Y, Wu J, Yang X. 2021. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Computers and Electronics in Agriculture, 183, 106048–106058.
Ma N, Zhang X, Zheng H-T, Sun J.2018. Shufflenet v2: Practical guidelines for efficient cnn architecture design. Proceedings of the European Conference on Computer Vision (ECCV), 11218, 116–131.
Mendes P A, Coimbra A P, De Almeida A T. 2023. Forest vegetation detection using deep learning object detection models. Forests, 14, 1787–1808.
Ong S Q, Ahmad H, Majid A H A. 2021. Development of a deep learning model from breeding substrate images: A novel method for estimating the abundance of house fly (Musca domestica L.) larvae. Pest Management Science, 77, 5347–5355.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L. 2019. Pytorch: An imperative style, high-performance deep learning library. Proceedings of the Conference on Neural Information Processing Systems, 32, 7994–8005.
Rahaman M, Chowdhury M, Rahman M A, Ahmed H, Hossain M, Rahman M H, Biswas M, Kader M, Noyan T A, Biswas M. 2023. A deep learning based smartphone application for detecting mango diseases and pesticide suggestions. International Journal of Computing and Digital Systems, 13, 1273–1286.
Redmon J, Divvala S, Girshick R, Farhadi A.2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 183, 779–788.
Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137–1149.
Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 2019. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128, 336–359.
Tan M, Pang R, Le Q V.2020. Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16, 10781–10790.
Tang Y, Chen C, Leite A C, Xiong Y. 2023. Editorial: Precision control technology and application in agricultural pest and disease control. Frontiers in Plant Science, 14, 1163839.
Tang Y, Qi S, Zhu L, Zhuo X, Zhang Y, Meng F. 2024. Obstacle avoidance motion in mobile robotics. Journal of System Simulation, 36, 1–26.
Tarek H, Aly H, Eisa S, Abul-Soud M. 2022. Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment. Electronics, 11, 140–158.
Wang R, Liu L, Xie C, Yang P, Li R, Zhou M. 2021. AgriPest: A large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild. Sensors, 21, 1601–1615.
Wang Z, Jin L, Wang S, Xu H. 2022. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biology and Technology, 185, 111808–111818.
Wei M, Zhan W. 2024. YOLO_MRC: A fast and lightweight model for real-time detection and individual counting of Tephritidae pests. Ecological Informatics, 79, 102445.
Woo S, Park J, Lee J-Y, Kweon I S.2018. CBAM: Convolutional block attention module. Proceedings of the European Conference on Computer Vision (ECCV), 1, 3–19.
Xu W, Xu T, Alex Thomasson J, Chen W, Karthikeyan R, Tian G, Shi Y, Ji C, Su Q. 2023a. A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments. Computers and Electronics in Agriculture, 211, 107961–107976.
Xu W, Yu X, Xue X. 2023b. A binary gridding path-planning method for plant-protecting UAVs on irregular fields. Journal of Integrative Agriculture, 22, 2796–2809.
Xu X, Shi J, Chen Y, He Q, Liu L, Sun T, Ding R, Lu Y, Xue C, Qiao H. 2023. Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level. Frontiers in Plant Science, 14, 1200901.
Yu C, Feng J, Zheng Z, Guo J, Hu Y. 2024. A lightweight SOD-YOLOv5n model-based winter jujube detection and counting method deployed on Android. Computers and Electronics in Agriculture, 218, 108701.
Yu L, Zhu J, Zhao Q, Wang Z. 2022. An efficient YOLO algorithm with an attention mechanism for vision-based defect inspection deployed on FPGA. Micromachines, 13, 1058–1073.
Yue X, Li H, Shimizu M, Kawamura S, Meng L. 2022. YOLO-GD: A deep learning-based object detection algorithm for empty-dish recycling robots. Machines, 10, 294–313.
Zeng T, Li S, Song Q, Zhong F, Wei X. 2023. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment. Computers and Electronics in Agriculture, 205, 107625–107638.
Zhang J, Zhou Y, Saab R. 2023. Post-training quantization for neural networks with provable guarantees. SIAM Journal on Mathematics of Data Science, 5, 373–399.
Zhang X, Zhou X, Lin M, Sun J.2018. Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 10, 6848–6856.
Zhang Y, Yu J, Chen Y, Yang W, Zhang W, He Y. 2022. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application. Computers and Electronics in Agriculture, 192, 106586–106597.
Zhou C, Lee W S, Zhang S, Liburd O E, Pourreza A, Schueller J K, Ampatzidis Y. 2024. A smartphone application for site-specific pest management based on deep learning and spatial interpolation. Computers and Electronics in Agriculture, 218, 108726.
|