Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1327-1341    DOI: 10.1016/j.jia.2024.09.036
Section 3: Diet components and feed additives Advanced Online Publication | Current Issue | Archive | Adv Search |
Seaweed as a feed additive to mitigate enteric methane emissions in ruminants: Opportunities and challenges

Yunlong Liu1, Mi Zhou2, Qiyu Diao1, Tao Ma1#, Yan Tu1#

1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada

 Highlights 
Asparagopsis taxiformis has demonstrated significant potential in reducing enteric methane emissions in ruminants, achieving reductions of up to 99% in vitro and in vivo, primarily due to its bromoform content.
● The application of seaweed as a feed additive faces challenges, including potential heavy metal contamination, environmental risks associated with bromoform, and the need for a sustainable cultivation and processing supply chain.
● Further research is needed to identify low-bromoform seaweed species and investigate additional bioactive compounds to optimize methane mitigation strategies.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

降低反刍动物肠道甲烷排放是应对气候变化的重要举措之一自研究人员首次发现大型藻类具备降低肠道甲烷排放的潜力以来,使用大型海藻作为一种新型饲料添加剂来抑制反刍动物肠道甲烷排放在些年得到了全球广泛关注。由于含有相对较高浓度的三溴甲烷,Asparagopsis taxiformis紫衫状海门冬)成为首选的目标物种。三溴甲烷作为一种卤代甲烷结构类似物,能够特异性地抑制瘤胃产甲烷菌中辅酶M甲基转移酶的活性,从而阻断甲烷生成。但是需要注意的是,三溴甲烷是一种潜在的有毒物质和消耗臭氧层的大气污染物。当前的研究重点集在饲喂富含三溴甲烷的海藻对反刍动物肠道甲烷减排效果、生产性能和安全性的影响,以及大规模海藻种植对大气环境的影响。未来在开发海藻作为甲烷减排产品时需要关注那些具备甲烷减排能力但同时三溴甲烷含量低的物种,例如Bonnemaisonia hamiferaDictyota bartayresiiCystoseira trinodis。此外,海藻富含多种生物活性物质,这些活性物质通常具有抗菌、抗炎等生理特性,但关于这些生物活性物质在甲烷减排中的效果研究仍然缺乏。因此,需要进一步深入研究以鉴定更多潜在功能的生物活性化合物。作为一个新的研究热点,海藻想要被开发为成熟的反刍动物饲料添加剂产品仍面临一些挑战和亟需解决的问题,例如重金属(碘和溴)和三溴甲烷在乳制品和制品中的残留问题,以及海藻种植、收获、保存和加工等产业链问题。综上尽管部分海藻已经表现出很好的甲减排效果,但其作为商业饲料添加剂的应用仍受到安全性、成本、政策激励和法律法规等因素的影响。



Abstract  
Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.  Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions, using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.  Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.  As a type of halogenated methane analogue, bromoform contained in Ataxiformis can specifically inhibit the activity of coenzyme M methyltransferase, thereby blocking the ruminal methanogenesis.  However, bromoform is a potential toxin and ozone-depleting substance.  In response, current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety, as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.  The current research on seaweed still needs to be improved, especially in developing more species with low bromoform content, such as Bonnemaisonia hamifera, Dictyota bartayresii, and Cystoseira trinodis.  Otherwise, seaweed is rich in bioactive substances and exhibits antibacterial, anti-inflammatory, and other physiological properties, but research on the role of these bioactive compounds in methane emissions is lacking.  It is worthy of deeper investigation to identify more potential bioactive compounds.  As a new focus of attention, seaweed has attracted the interest of many scientists.  Nevertheless, seaweed still faces some challenges as a feed additive to ruminants, such as the residues of heavy metals (iodine and bromine) and bromoform in milk or meat, as well as the establishment of a supply chain for seaweed cultivation, preservation, and processing.  We have concluded that the methane-reducing efficacy of seaweed is indisputable.  However, its application as a commercial feed additive is still influenced by factors such as safety, costs, policy incentives, and regulations.


Keywords:  seaweed        Asparagopsis taxiformis        bromoform        methane emission        ruminant  
Received: 13 October 2023   Accepted: 11 August 2024
Fund: 
This study was supported by the Youth Innovation Program of the Chinese Academy of Agricultural Sciences (Y2022QC10), the Agricultural Science and Technology Innovation Program, China (CAAS-ASTIP-2023-IFR-03, CAAS-IFR-ZDRW202302 and CAAS-IFR-ZDRW202404), and the Basal Research Fund of the Institute of Feed Research of Chinese Academy of Agricultural Sciences (1610382024009).
About author:  Yunlong Liu, E-mail: liuyunlong9438@163.com; #Correspondence Tao Ma, E-mail: matao@caas.cn; Yan Tu, E-mail: tuyan@caas.cn

Cite this article: 

Yunlong Liu, Mi Zhou, Qiyu Diao, Tao Ma, Yan Tu. 2025. Seaweed as a feed additive to mitigate enteric methane emissions in ruminants: Opportunities and challenges. Journal of Integrative Agriculture, 24(4): 1327-1341.

Abbott D W, Aasen I M, Beauchemin K A, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny D A, Krizsan S J, Kirwan S F, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh P J, Waters S, Xing X. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals10, 1–28.

Abecia L, Toral P G, Martín-García A I, Martínez G, Tomkins N W, Molina-Alcaide E, Newbold C J, Yáñez-Ruiz D R. 2012. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science95, 2027–2036.

Almeida de A K, Cowley F, Hegarty R, Kinley R D. 2022. The red seaweed Asparagopsis taxiformis inhibits methane emissions in feedlot beef cattle. In: 8th International Greenhouse Gas & Animal Agriculture Conference, Orlando, USA. pp. 50.

Alshehri M A, Aziz A T, Alzahrani O, Alasmari A, Ibrahim S, Osman G, Bahattab O. 2019. DNA-barcoding and species identification for some Saudi Arabia seaweeds using rbcL gene. Journal of Pure and Applied Microbiology13, 2035–2044.

Alvarez C, Andersen T O, Eikanger K S, Hamfjord I W, Niu P, Weiby K V, Årvik L, Dörsch P, Hagen L H, Pope P B, Forberg D K, Hustoft H K, Schwarm A, Kidane A. 2022. Insertion depth of oral stomach tubes in cows affects in vitro methane inhibition of seaweed. In: 8th International Greenhouse Gas & Animal Agriculture Conference, Orlando, USA. pp. 51.

Angellotti M, Lindberg M, Ramin M, Krizsan S J, Danielsson R. 2022. Supplementation of Asparagopsis taxiformis for mitigation of enteric methane emissions in dairy cows: Feed Intake and milk yield responses. In: Proceedings of the 11th Nordic Feed Science Conference. Uppsala, Sweden. pp. 101.

Antaya N T, Ghelichkhan M, Pereira A B D, Soder K J, Brito A F. 2019. Production, milk iodine, and nutrient utilization in Jersey cows supplemented with the brown seaweed Ascophyllum nodosum (kelp meal) during the grazing season. Journal of Dairy Science102, 8040–8058.

Arndt C, Hristov A N, Price W J, McClelland S C, Pelaez A M, Cueva S F, Oh J, Dijkstra J, Bannink A, Bayat A R, Crompton L A, Eugène M A, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold C J, Reynolds C K, Schwarm A, et al. 2022. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5°C target by 2030 but not 2050. Proceedings of the National Academy of Sciences of the United States of America119, 1–10.

Bauchop T. 1967. Inhibition of rumen methanogenesis by methane analogues. Journal of Bacteriology94, 171–175.

Berghuis B A, Yu F B, Schulz F, Blainey P C, Woyke T, Quake S R. 2019. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proceedings of the National Academy of Sciences of the United States of America116, 5037–5044.

Brooke C G, Roque B M, Shaw C, Najafi N, Gonzalez M, Pfefferlen A, De Anda V, Ginsburg D W, Harden M C, Nuzhdin S V., Salwen J K, Kebreab E, Hess M. 2020. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Frontiers in Marine Science7, 561.

Cotter J, Glass R, Black J, Madden P, Davison T. 2015. A marginal abatement cost analysis of practice options related to the NLMP program (Internet). [2023-7-1]. https://www.mla.com.au/research-and-development/reports/2015/a-marginal-abatement-cost-analysis-of-practice-options-related-to-the-nlmp-program/

Dubois B, Tomkins N W, D. Kinley R, Bai M, Seymour S, A. Paul N, de Nys R. 2013. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. American Journal of Plant Sciences4, 34–43.

Duin E C, Wagner T, Shima S, Prakash D, Cronin B, Yáñez-Ruiz D R, Duval S, Rümbeli R, Stemmler R T, Thauer R K, Kindermann M. 2016. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences of the United States of America113, 6172–6177.

Ellermann J, Rospert S, Thauer R K, Bokranz M, Klein A, Voges M, Berkessel A. 1989. MethylcoenzymeM reductase from Methanobacterium thermoautotrophicum (strain Marburg): Purity, activity and novel inhibitors. European Journal of Biochemistry184, 63–68.

Enzmann F, Mayer F, Rother M, Holtmann D. 2018. Methanogens: Biochemical background and biotechnological applications. AMB Express8, 1.

Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer R K. 1997. Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science278, 1457–1462.

EP (European Parliament). 2015. Commission Directive 2015/1787 amendment to Council Directive 98/83/EC on the quality of water intended for human consumption.

FAO (Food and Agriculture Organization of the United Nations), WHO (World Health Organization). 2021. Report of the Expert Meeting on Food Safety for Seaweed: Current Status and Future Perspectives. Rome.

Glasson C R K, Kinley R D, de Nys R, King N, Adams S L, Packer M A, Svenson J, Eason C T, Magnusson M. 2022. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Research64, 102673.

Gräwert T, Hohmann H P, Kindermann M, Duval S, Bacher A, Fischer M. 2014. Inhibition of methyl-CoM reductase from methanobrevibacter ruminantium by 2-bromoethanesulfonate. Journal of Agricultural and Food Chemistry62, 12487–12490.

Greening C, Geier R, Wang C, Woods L C, Morales S E, McDonald M J, Rushton-Green R, Morgan X C, Koike S, Leahy S C, Kelly W J, Cann I, Attwood G T, Cook G M, Mackie R I. 2019. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME Journal13, 2617–2632.

Guiry M D. 2012. How many species of algae are there? Journal of Phycology48, 1057–1063.

Gunter S, Kalscheur K, Gossard D, Moffet C, Schuppenhoaur M, Graham M, Hamilton S, Bukowski M, Roemmich J, Thelen T, Gardner L. 2022. Six macroalgaes harvested along the California coast and their ability to mitigate methane emission by a forage diet. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 138.

Hafting J T, Craigie J S, Stengel D B, Loureiro R R, Buschmann A H, Yarish C, Edwards M D, Critchley A T. 2015. Prospects and challenges for industrial production of seaweed bioactives. Journal of Phycology51, 821–837.

Holdt S L, Kraan S. 2011. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology23, 543–597.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, the United Kingdom and New York.

Jayvee A S, Luigi P V, Kathrina J D D A. 2021. Biological and ecological studies on Asparagopsis taxiformis for culture technology development (BEAT) [Internet]. [2023-7-5]. http://vipcorals.batstate-u.edu.ph/biological-and-ecological-studies-on-asparagopsis-taxiformis-for-culture-technology-development/

Jia Y, Quack B, Kinley R D, Pisso I, Tegtmeier S. 2022. Potential environmental impact of bromoform from Asparagopsis farming in Australia. Atmospheric Chemistry and Physics22, 7631–7646.

Karekar S, Stefanini R, Ahring B. 2022. Homo-acetogens: Their metabolism and competitive relationship with hydrogenotrophic methanogens. Microorganisms10, 397.

Karekar S C, Ahring B K. 2023. Reducing methane production from rumen cultures by bioaugmentation with homoacetogenic bacteria. Biocatalysis and Agricultural Biotechnology47, 102526.

Kebreab E, Bannink A, Pressman E M, Walker N, Karagiannis A, van Gastelen S, Dijkstra J. 2022. A meta-analysis of effects of 3-nitrooxypropanol on methane production, yield, and intensity in dairy cattle. Journal of Dairy Science106, 927–936.

Kim Y R, Park K Y, Nejad J G, Yoon W J, Kim S C, Lee J S, Lee H G. 2022. Rumen methane abatement by phlorotannin derivatives (phlorofucofuroeckol-A, dieckol, and 8,8’-bieckol) and its relationship with the hydroxyl group and ether linkage. Animal Feed Science and Technology293, 115468.

Kinley R D, Fredeen A H. 2015. In vitro evaluation of feeding North Atlantic stormtoss seaweeds on ruminal digestion. Journal of Applied Phycology27, 2387–2393.

Kinley R D, Martinez-Fernandez G, Matthews M K, de Nys R, Magnusson M, Tomkins N W. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production259, 120836.

Kohn R A, Boston R C. 2000. The Role of Thermodynamics in Controlling Rumen Metabolism. Commonwealth Agricultural Bureaux International, Wallingford, UK.

Krizsan S J, Ramin M, Chagas J C C, Halmemies-Beauchet-Filleau A, Singh A, Schnürer A, Danielsson R. 2023. Effects on rumen microbiome and milk quality of dairy cows fed a grass silage-based diet supplemented with the macroalga Asparagopsis taxiformisFrontiers in Animal Science4, 1112969.

Künzel S, Yergaliyev T, Wild K J, Philippi H, Petursdottir A H, Gunnlaugsdottir H, Reynolds C K, Humphries D J, Camarinha-Silva A, Rodehutscord M. 2022. Methane education potential of brown seaweeds and their influence on nutrient degradation and microbiota composition in a rumen simulation technique. Frontiers in Microbiology13, 889618.

Leung A M, Braverman L E. 2014. Consequences of excess iodine. Nature Reviews Endocrinology10, 136–142.

Li X, Norman H C, Kinley R D, Laurence M, Wilmot M, Bender H, de Nys R, Tomkins N. 2018. Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science58, 681–688.

Liu H, Wang J, Wang A, Chen J. 2011. Chemical inhibitors of methanogenesis and putative applications. Applied Microbiology and Biotechnology89, 1333–1340.

Lyu Z, Shao N, Akinyemi T, Whitman W B. 2018. Methanogenesis. Current Biology28, 727–732.

Machado L, Magnusson M, Paul N A, Kinley R, de Nys R, Tomkins N. 2016a. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology28, 1443–1452.

Machado L, Magnusson M, Paul N A, Kinley R, de Nys R, Tomkins N. 2016b. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitroJournal of Applied Phycology28, 3117–3126.

Machado L, Magnusson M, Paul N A, De Nys R, Tomkins N. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE9, 85289.

Magnusson M, Vucko M J, Neoh T L, de Nys R. 2020. Using oil immersion to deliver a naturally-derived, stable bromoform product from the red seaweed Asparagopsis taxiformisAlgal Research51, 102065.

Maia M R G, Fonseca A J M, Oliveira H M, Mendonça C, Cabrita A R J. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific Reports6, 32321.

Mairh O P, Ramavat B K, Tewari A, Oza R M, Joshi H V. 1989. Seasonal variation, bioaccumulation and prevention of loss of iodine in seaweeds. Phytochemistry28, 3307–3310.

Makkar H P S, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P. 2016. Seaweeds for livestock diets: A review. Animal Feed Science and Technology212, 1–17.

Martin C, Morgavi D P, Doreau M. 2010. Methane mitigation in ruminants: From microbe to the farm scale. Animal4, 351–365.

Martinez-Fernandez G, Denman S E, Cheung J, McSweeney C S. 2017. Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. Frontiers in Microbiology8, 1871.

Melgar A, Lage C F A, Nedelkov K, Räisänen S E, Stefenoni H, Fetter M E, Chen X, Oh J, Duval S, Kindermann M, Walker N D, Hristov A N. 2021. Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. Journal of Dairy Science104, 357–366.

Mihaila A A, Glasson C R K, Lawton R, Muetzel S, Molano G, Magnusson M. 2022. New temperate seaweed targets for mitigation of ruminant methane emissions: An in vitro assessment. Applied Phycology3, 274–284.

Moss A R, Jouany J P, Newbold J. 2000. Methane production by ruminants: Its contribution to global warming. Annales de Zootechnie49, 231–253.

Muizelaar W, van Duinkerken G, Khan Z, Dijkstra J. 2023. Evaluation of 3 northwest European seaweed species on enteric methane production and lactational performance of Holstein-Friesian dairy cows. Journal of Dairy Science106, 4622–4633.

Muizelaar W, Groot M, van Duinkerken G, Peters R, Dijkstra J. 2021. Safety and transfer study: Transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods10, 584.

Nin-Pratt A, Beveridge M C M, Sulser T B, Marwaha N, Stanley M, Grisenthwaite R, Phillips M J, Sulser T. 2022. Cattle, Seaweed, and Global Greenhouse Gas Emissions. International Food Policy Research Institute, Washington, USA. pp. 2111.

Nunes N, Valente S, Ferraz S, Barreto M C, Pinheiro de Carvalho M A A. 2018. Nutraceutical potential of Asparagopsis taxiformis (Delile) Trevisan extracts and assessment of a downstream purification strategy. Heliyon4, e00957.

Olijhoek D W, Thorsteinsson M, Curtasu M V, Nielsen M O, Nørskov N P. 2022. Identification of potential methane mitigating compounds in ensiled brown seaweed Saccharina latissimi. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 218.

Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H. 2013. Greenhouse Gas Emission from Ruminant Supply Chains: A Global Life Cycle Assessment. Food and Agriculture Organization of the United Nations, Rome.

Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology8, 13.

Patra A K, Saxena J. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews22, 204–219.

Paul N A, Cole L, de Nys R, Steinberg P D. 2006. Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). Journal of Phycology42, 637–645.

Pérez M J, Falqué E, Domínguez H. 2016. Antimicrobial action of compounds from marine seaweed. Marine Drugs14, 52.

Pitta D, Indugu N, Narayan K, Hennessy M. 2022. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows. Journal of Dairy Science105, 8569–8585.

Pitta D W, Melgar A, Hristov A, Challa K, Vecchiarelli B, Hennessy M, Narayan K, Duval S, Walker N. 2022. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression proles in dairy cows. Microbiome10, 146.

Rengasamy K R, Mahomoodally M F, Aumeeruddy M Z, Zengin G, Xiao J, Kim D H. 2020. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology135, 111013.

Reyes D C, Meredith J, Puro L, Berry K, Kersbergen R, Soder K J, Quigley C, Donihue M, Cox D, Price N N, Brito A F. 2023. Maine organic dairy producers’ receptiveness to seaweed supplementation and effect of Chondrus crispus on enteric methane emissions in lactating cows. Frontiers in Veterinary Science10, 1153097.

Robert P G, James A R, Ralph S W. 1978. Preparation of coenzyme M analogs and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicumBiochemistry17, 2374–2377.

Romero P, Huang R, Jiménez E, Palma-Hidalgo J M, Ignacio Martín-García A, Ungerfeld E M, Yanez-Ruiz D, Popova M, Morgavi D P, Belanche A, Yáñez-Ruiz D R. 2022. In vivo study of combining Asparagopsis taxiformis and phloroglucinol to reduce methane production and improve rumen fermentation efficiency in goats. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 239.

Roque B M, Salwen J K, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production234, 132–138.

Roque B M, Venegas M, Kinley R D, de Nys R, Duarte T L, Yang X, Kebreab E. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE16, e0247820.

Stefenoni H A, Räisänen S E, Cueva S F, Wasson D E, Lage C F A, Melgar A, Fetter M E, Smith P, Hennessy M, Vecchiarelli B, Bender J, Pitta D, Cantrell C L, Yarish C, Hristov A N. 2021. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. Journal of Dairy Science104, 4157–4173.

Sucu E. 2020. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Annals of Animal Science20, 207–218.

Tan S, Harris J, Roque B M, Askew S, Kinley R D. 2022. Shelf-life stability of Asparagopsis bromoform in oil and freeze-dried powder. Journal of Applied Phycology35, 291–299.

Terry S, Krüger A, Lima P, Gruninger R, Abbott D, Beauchemin K, Terry S. 2022. Evaluation of rumen fermentation and microbial adaptation to three red seaweeds using the rumen simulation technique. Animals13, 1643.

Thapa H R, Lin Z, Yi D, Smith J E, Schmidt E W, Agarwal V. 2020. Genetic and biochemical reconstitution of bromoform biosynthesis in Asparagopsis lends insights into seaweed reactive oxygen species enzymology. ACS Chemical Biology15, 1662–1670.

Thauer R K. 1998. Biochemistry of methanogenesis: A tribute to marjory stephenson. Microbiology144, 2377–2406.

Thauer R K. 2012. The Wolfe cycle comes full circle. Proceedings of the National Academy of Sciences of the United States of America109, 15084–15085.

Thorsteinsson M, Lund P, Weisbjerg M R, Hellwing A L F, Hansen H H, Nielsen M O. 2022. Enteric methane emissions of dairy cows supplemented “Compound X” in a dose-response study. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 263.

Tomkins N W, Colegate S M, Hunter R A. 2009. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Animal Production Science49, 1053–1058.

Whittington T. 2022. Reality check: seaweed as a feedstock for cattle likely to be nothing more than a ‘niche market’ by 2030 [Internet]. [2023-7-5]. https://www.countryman.com.au/countryman/opinion/a-reality-check-on-seaweed-as-a-feedstock-for-cows-c-5238740

Ungerfeld E M. 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology6, 37.

Ungerfeld E M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology11, 589.

Ungerfeld E M, Rust S R, Boone D R, Liu Y. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. Journal of Applied Microbiology97, 520–526.

Vijn S, Compart D P, Dutta N, Foukis A, Hess M, Hristov A N, Kalscheur K F, Kebreab E, Nuzhdin S V, Price N N, Sun Y, Tricarico J M, Turzillo A, Weisbjerg M R, Yarish C, Kurt T D. 2020. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Frontiers in Veterinary Science7, 597430.

Vucko M J, Magnusson M, Kinley R D, Villart C, de Nys R. 2017. The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformisJournal of Applied Phycology29, 1577–1586.

Wagner T, Ermler U, Shima S. 2016. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 (4Fe–4S) clusters. Science354, 114–117.

Wang Y, Xu Z, Bach S J, McAllister T A. 2008. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology145, 375–395.

Wasson D E, Cueva Welchez S F, Stefenoni H A, Fetter M E, Lage C F A, Melgar A, Raeisaenen S E, Silvestre T M, Yarish C, Hristov A N. 2022a. The macroalgae Asparagopsis taxiformis decreases dry matter intake and milk production in dairy cows. In: 8th International Greenhouse Gas & Animal Agriculture Conference. Orlando, USA. pp. 284.

Wasson D E, Yarish C, Hristov A N. 2022b. Enteric methane mitigation through Asparagopsis taxiformis supplementation and potential algal alternatives. Frontiers in Animal Science3, 999338.

WMO (World Meteorological Organization). 2018. Scientific Assessment of Ozone Depletion: 2018. Geneva, Switzerland.

Wongnate T, Sliwa D, Ginovska B, Smith D, Wolf M W, Lehnert N, Raugei S, Ragsdale S W. 2016. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science352, 953–958.

Wood J M, Kennedy F S, Wolfe R S. 1968. The reaction of multi-halogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry7, 1707–1713.

Zhu P, Li D, Yang Q, Su P, Wang H, Heimann K, Zhang W. 2021. Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. Algal Research56, 9.

No related articles found!
No Suggested Reading articles found!