Acevedo F E, Peiffer M, Ray S, Meagher R, Luthe D S, Felton G W. 2018. Intraspecific differences in plant defense induction by fall armyworm strains. New Phytologist, 218, 310–321.
Acevedo F E, Peiffer M, Tan C W, Stanley B A, Stanley A, Wang J, Jones A G, Hoover K, Rosa C, Luthe D, Felton G. 2017. Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30, 127–137.
Acevedo F E, Smith P, Peiffer M, Helms A, Tooker J, Felton G W. 2019. Phytohormones in fall armyworm saliva modulate defense responses in plants. Journal of Chemical Ecology, 45, 598–609.
Alborn H T, Turlings T C J, Jones T H, Stenhagen G, Loughrin J H, Tumlinson J H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 276, 945–949.
Allmann S, Baldwin I T. 2010. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science, 329, 1075–1078.
Allmann S, Spathe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin I T, Hansson B S. 2013. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. Elife, 2, e00421.
Ammar E D, Shatters R G, Hall D G. 2011. Localization of Candidatus Liberibacter asiaticus, associated with Citrus Huanglongbing disease, in its psyllid vector using fluorescence in situ hybridization. Journal of Phytopathology, 159, 726–734.
Apostolou A, Shen Y, Liang Y, Luo J, Fang S. 2008. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Experimental Cell Research, 314, 2454–2467.
Bauer J A, Zámocká M, Majtán J, Bauerová-Hlinková V. 2022. Glucose oxidase, an enzyme “Ferrari”: Its structure, function, production and properties in the light of various industrial and biotechnological applications. Biomolecules, 12, 472.
Bos J I, Prince D, Pitino M, Maffei M E, Win J, Hogenhout S A. 2010. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genetics, 6, e1001216.
Chaudhary R, Atamian H S, Shen Z, Briggs S P, Kaloshian I. 2014. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 8919–8924.
Chaudhary R, Peng H C, He J, Macwilliams J, Teixeira M, Tsuchiya T, Chesnais Q, Mudgett M B, Kaloshian I. 2019. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. New Phytologist, 221, 1518–1528.
Chen C Y, Liu Y Q, Song W M, Chen D Y, Chen F Y, Chen X Y, Chen Z W, Ge S X, Wang C Z, Zhan S, Chen X Y, Mao Y B. 2019. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proceedings of the National Academy of Sciences of the United States of America, 116, 14331–14338.
Chen C Y, Mao Y B. 2020. Research advances in plant–insect molecular interaction. F1000Research, 9, doi: 10.12688/f1000research.21502.1.
Chen X, Liu Y Q, Wu M N, Yan L, Chen C Y, Mu Y P, Liu Y J, Wang M Y, Chen X Y, Mao Y B. 2022. A highly accumulated secretory protein from cotton bollworm interacts with basic helix-loop-helix transcription factors to dampen plant defense. New Phytologist, 237, 265–278.
Chen X, Peiffer M, Tan C W, Felton G W. 2020. Fungi from the black cutworm Agrotis ipsilon oral secretions mediate plant–insect interactions. Arthropod-Plant Interactions, 14, 423–432.
Chung S H, Rosa C, Scully E D, Peiffer M, Tooker J F, Hoover K, Luthe D S, Felton G W. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 110, 15728–15733.
Collatz K G, Mommsen T. 1974. The structure of the emulsifying substances in several invertebrates. Journal of Comparative Physiology, 94, 339–352.
Cui J R, Bing X L, Tang Y J, Liu F, Ren L, Zhou J Y, Liu H H, Wang M K, Hoffmann A A, Hong X Y. 2023. A conserved protein disulfide isomerase enhances plant resistance against herbivores. Plant Physiology, 191, 660–678.
Cui N, Lu H, Wang T, Zhang W, Kang L, Cui F. 2019. Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Philosophical Transactions of the Royal Society (B: Biological Sciences), 374, 20180314.
Dames P, Zimmermann B, Schmidt R, Rein J, Voss M, Schewe B, Walz B, Baumann O. 2006. cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. Proceedings of the National Academy of Sciences of the United States of America, 103, 3926–3931.
Domazakis E, Wouters D, Lochman J, Visser R G, Joosten M H, Vleeshouwers V G. 2020. ELR is a true pattern recognition receptor that associates with elicitins from diverse Phytophthora species. BioRxiv, doi: org/10.1101/2020.09.21.305813.
Dong Y, Huang X, Yang Y, Li J, Zhang M, Shen H, Ren Y, Li X, Tian J, Shen D, Dou D, Xia A. 2022a. Characterization of salivary secreted proteins that induce cell death from Riptortus pedestris (Fabricius) and their roles in insect–plant interactions. Frontiers in Plant Science, 13, 912603.
Dong Y, Zhou J, Yang Y, Lu W, Jin Y, Huang X, Zhang W, Li J, Ai G, Yin Z, Shen D, Jing M, Dou D, Xia A. 2022b. Cyclophilin effector Al106 of mirid bug Apolygus lucorum inhibits plant immunity and promotes insect feeding by targeting PUB33. New Phytologist, 237, 2308–2403.
Du H, Xu H X, Wang F, Qian L X, Liu S S, Wang X W. 2022. Armet from whitefly saliva acts as an effector to suppress plant defenses by targeting tobacco cystatin. New Phytologist, 234, 1848–1862.
Erb M, Reymond P. 2019. Molecular interactions between plants and insect herbivores. Annual Review of Plant Biology, 70, 527–557.
Felix G, Duran J D, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18, 265–276.
Felton G W. 1995. Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29, 187–197.
Fu J, Shi Y, Wang L, Tian T, Li J, Gong L, Zheng Z, Jing M, Fang J, Ji R. 2022. Planthopper-secreted salivary calmodulin acts as an effector for defense responses in rice. Frontiers in Plant Science, 13, 841378.
Fu J, Shi Y, Wang L, Zhang H, Li J, Fang J, Ji R. 2020. Planthopper-secreted salivary disulfide isomerase activates immune responses in plants. Frontiers in Plant Science, 11, 622513.
Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences, 14, 10242–10297.
Gao H, Zou J, Lin X, Zhang H, Yu N, Liu Z. 2022. Nilaparvata lugens salivary protein NlG14 triggered defense response in plants. Journal of Experimental Botany, 73, 7477–7487.
Gatehouse J A. 2002. Plant resistance towards insect herbivores: A dynamic interaction. New Phytologist, 156, 145–169.
Gaulin E, Bottin A, Dumas B. 2010. Sterol biosynthesis in oomycete pathogens. Plant Signaling and Behavior, 5, 258–260.
Gong G, Yuan L Y, Li Y F, Xiao H X, Li Y F, Zhang Y, Wu W J, Zhang Z F. 2022. Salivary protein 7 of the brown planthopper functions as an effector for mediating tricin metabolism in rice plants. Scientific Reports, 12, 3205.
Guo H, Wielsch N, Hafke J B, Svatoš A, Mithöfer A, Boland W. 2013. A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves. Insect Biochemistry and Molecular Biology, 43, 849–858.
Guo H, Zhang Y, Tong J, Ge P, Wang Q, Zhao Z, Zhu-Salzman K, Hogenhout S A, Ge F, Sun Y. 2020. An aphid-secreted salivary protease activates plant defense in phloem. Current Biology, 30, 4826–4836.
Guo J, Wang H, Guan W, Guo Q, Wang J, Yang J, Peng Y, Shan J, Gao M, Shi S, Shangguan X, Liu B, Jing S, Zhang J, Xu C, Huang J, Rao W, Zheng X, Wu D, Zhou C. 2023. A tripartite rheostat controls self-regulated host plant resistance to insects. Nature, 618, 799–807.
Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin I T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiology, 125, 711–717.
Hannula S E, Zhu F, Heinen R, Bezemer T M. 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications, 10, 1–9.
Hind S R, Strickler S R, Boyle P C, Dunham D M, Bao Z, O’doherty I M, Baccile J A, Hoki J S, Viox E G, Clarke C R, Vinatzer B A, Schroeder F C, Martin G B. 2016. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nature Plants, 2, 16128.
Hogenhout S A, Bos J I. 2011. Effector proteins that modulate plant--insect interactions. Current Opinion in Plant Biology, 14, 422–428.
Huang H J, Cui J R, Xia X, Chen J, Ye Y X, Zhang C X, Hong X Y. 2019. Salivary DNase II from Laodelphax striatellus acts as an effector that suppresses plant defence. New Phytologist, 224, 860–874.
Huang H J, Li L L, Ye Z X, Lu J B, Lou Y H, Wei Z Y, Sun Z T, Chen J P, Li J M, Zhang C X. 2024. Salivary proteins potentially derived from horizontal gene transfer are critical for salivary sheath formation and other feeding processes. Communication Biology, 7, 257.
Huang H J, Wang Y Z, Li L L, Lu H B, Lu J B, Wang X, Ye Z X, Zhang Z L, He Y J, Lu G, Zhuo J C, Mao Q Z, Sun Z T, Chen J P, Li J M, Zhang C X. 2023. Planthopper salivary sheath protein LsSP1 contributes to manipulation of rice plant defenses. Nature Communications, 14, 737.
Huffaker A, Dafoe N J, Schmelz E A. 2011. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiology, 155, 1325–1338.
Iida J, Desaki Y, Hata K, Uemura T, Yasuno A, Islam M, Maffei M E, Ozawa R, Nakajima T, Galis I, Arimura G I. 2019. Tetranins: New putative spider mite elicitors of host plant defense. New Phytologist, 224, 875–885.
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann A A, Zhu-Salzman K, Fang J. 2021. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. New Phytologist, 232, 802–817.
Kallure G S, Kumari A, Shinde B A, Giri A P. 2022. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. Phytochemistry, 193, 113008.
Kaloshian I, Walling L L. 2016. Hemipteran and dipteran pests: Effectors and plant host immune regulators. Journal of Integrative Plant Biology, 58, 350–361.
Kuhns E H, Seidl-Adams I, Tumlinson J H. 2012. A lepidopteran aminoacylase (L-ACY-1) in Heliothis virescens (Lepidoptera: Noctuidae) gut lumen hydrolyzes fatty acid-amino acid conjugates, elicitors of plant defense. Insect Biochemistry and Molecular Biology, 42, 32–40.
Labandeira C C. 2013. A paleobiologic perspective on plant–insect interactions. Current Opinion in Plant Biology, 16, 414–421.
Li P, Liu C, Deng W H, Yao D M, Pan L L, Li Y Q, Liu Y Q, Liang Y, Zhou X P, Wang X W. 2019. Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathogens, 15, e1007607.
Li R, Weldegergis B T, Li J, Jung C, Qu J, Sun Y, Qian H, Tee C, Van Loon J J, Dicke M, Chua N H, Liu S S, Ye J. 2014. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell, 26, 4991–5008.
Liang X, Zhou J M. 2018. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology, 69, 267–299.
Lin P A, Chen Y, Chaverra-Rodriguez D, Heu C C, Zainuddin N B, Sidhu J S, Peiffer M, Tan C W, Helms A, Kim D, Ali J, Rasgon J L, Lynch J, Anderson C T, Felton G W. 2021. Silencing the alarm: An insect salivary enzyme closes plant stomata and inhibits volatile release. New Phytologist, 230, 793–803.
Lin Y H, Silven J J M, Wybouw N, Fandino R A, Dekker H L, Vogel H, Wu Y L, De Koster C, Grosse-Wilde E, Haring M A, Schuurink R C, Allmann S. 2023. A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant. Nature Communications, 14, 3666.
Lindner H A, Lunin V V, Alary A, Hecker R, Cygler M, Ménard R. 2003. Essential roles of zinc ligation and enzyme dimerization for catalysis in the Aminoacylase-1/M20 family. Journal of Biological Chemistry, 278, 44496–44504.
Liu H, Wang C, Qiu C L, Shi J H, Sun Z, Hu X J, Liu L, Wang M Q. 2021. A salivary odorant-binding protein mediates Nilaparvata lugens feeding and host plant phytohormone suppression. International Journal of Molecular Sciences, 22, 4988.
Liu S, Jaouannet M, Dempsey D A, Imani J, Coustau C, Kogel K H. 2020. RNA-based technologies for insect control in plant production. Biotechnology Advances, 39, 107463.
Louis J, Peiffer M, Ray S, Luthe D S, Felton G W. 2013. Host-specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize. New Phytologist, 199, 66–73.
Luo M, Li B, Jander G, Zhou S. 2023. Non-volatile metabolites mediate plant interactions with insect herbivores. Plant Journal, 114, 1164–1177.
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in Monocot and Dicot Plants. Molecular Plant, 8, 1274–1284.
Maclean A M, Orlovskis Z, Kowitwanich K, Zdziarska A M, Angenent G C, Immink R G, Hogenhout S A. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biology, 12, e1001835.
Maffei M E, Mithofer A, Boland W. 2007. Before gene expression: Early events in plant–insect interaction. Trends in Plant Science, 12, 310–316.
Marzorati M, Alma A, Sacchi L, Pajoro M, Palermo S, Brusetti L, Raddadi N, Balloi A, Tedeschi R, Clementi E, Corona S, Quaglino F, Bianco P A, Beninati T, Bandi C, Daffonchio D. 2006. A novel bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of flavescence doree in vitis vinifera. Applied and Environmental Microbiology, 72, 1467–1475.
Mattiacci L, Dicke M, Posthumus M A. 1995. beta-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 92, 2036–2040.
Mikes V, Milat M L, Ponchet M, Panabières F, Ricci P, Blein J P. 1998. Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochemical and Biophysical Research Communications, 245, 133–139.
Misas-Villamil J C, Van Der Hoorn R A, Doehlemann G. 2016. Papain-like cysteine proteases as hubs in plant immunity. New Phytologist, 212, 902–907.
Mondal H A. 2017. Shaping the understanding of saliva-derived effectors towards aphid colony proliferation in host plant. Journal of Plant Biology, 60, 103–115.
Musser R O, Hum-Musser S M, Eichenseer H, Peiffer M, Ervin G, Murphy J B, Felton G W. 2002. Herbivory: Caterpillar saliva beats plant defences. Nature, 416, 599–600.
Mutti N S, Louis J, Pappan L K, Pappan K, Begum K, Chen M S, Park Y, Dittmer N, Marshall J, Reese J C, Reeck G R. 2008. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proceedings of the National Academy of Sciences of the United States of America, 105, 9965–9969.
Naessens E, Dubreuil G, Giordanengo P, Baron O L, Minet-Kebdani N, Keller H, Coustau C. 2015. A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Current Biology, 25, 1898–1903.
Newman M A, Sundelin T, Nielsen J T, Erbs G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 4, 139.
Orozco-Cardenas M, Mcgurl B, Ryan C A. 1993. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proceedings of the National Academy of Sciences of the United States of America, 90, 8273–8276.
Palgi M, Greco D, Lindström R, Auvinen P, Heino T I. 2012. Gene expression analysis of Drosophilaa Manf mutants reveals perturbations in membrane traffic and major metabolic changes. BMC Genomics, 13, 1–20.
Palgi M, Lindström R, Peränen J, Piepponen T P, Saarma M, Heino T I. 2009. Evidence that DmMANF is an invertebrate neurotrophic factor supporting dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 106, 2429–2434.
Pearce G, Strydom D, Johnson S, Ryan C A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 253, 895–897.
Pitino M, Hoffman M T, Zhou L, Hall D G, Stocks I C, Duan Y. 2014. The phloem-sap feeding mealybug (Ferrisia virgata) carries ‘Candidatus Liberibacter asiaticus’ populations that do not cause disease in host plants. PLoS ONE, 9, e85503.
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner A D, Dressano K, Schmelz E A, Huffaker A. 2021. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. Plant Journal, 108, 1295–1316.
Quintana-Rodriguez E, Duran D, Heil M, Camacho Coronel X. 2018. Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests. Scientia Horticulturae, 237, 207–220.
Rao W, Zheng X, Liu B, Guo Q, Guo J, Wu Y, Shangguan X, Wang H, Wu D, Wang Z, Hu L, Xu C, Jiang W, Huang J, Shi S, He G. 2019. Secretome analysis and in planta expression of salivary proteins identify candidate effectors from the brown planthopper Nilaparvata lugens. Molecular Plant-Microbe Interactions, 32, 227–239.
Rodriguez P A, Escudero-Martinez C, Bos J I. 2017. An aphid effector targets trafficking protein VPS52 in a host-specific manner to promote virulence. Plant Physiology, 173, 1892–1903.
Rodriguez P A, Stam R, Warbroek T, Bos J I. 2014. Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Molecular Plant-Microbe Interactions, 27, 30–39.
Rushton P J, Somssich I E, Ringler P, Shen Q J. 2010. WRKY transcription factors. Trends in Plant Science, 15, 247–258.
Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin I T. 2011. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiology, 156, 1520–1534.
Schmelz E A. 2015. Impacts of insect oral secretions on defoliation-induced plant defense. Current Opinion in Insect Science, 9, 7–15.
Schmelz E A, Carroll M J, Leclere S, Phipps S M, Meredith J, Chourey P S, Alborn H T, Teal P E. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences of the United States of America, 103, 8894–8899.
Schmelz E A, Leclere S, Carroll M J, Alborn H T, Teal P E. 2007. Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiology, 144, 793–805.
Schuman M C, Baldwin I T. 2016. The layers of plant responses to insect herbivores. Annual Review of Entomology, 61, 373–394.
Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, Guo J, Rao W, Jing S, Guan W, Ma Y, Wu Y, Hu L, Chen R, Du B, Zhu L, Yu D, He G. 2018. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiology, 176, 552–565.
Shinya T, Yasuda S, Hyodo K, Tani R, Hojo Y, Fujiwara Y, Hiruma K, Ishizaki T, Fujita Y, Saijo Y, Galis I. 2018. Integration of danger peptide signals with herbivore-associated molecular pattern signaling amplifies anti-herbivore defense responses in rice. Plant Journal, 94, 626–637.
Snoeck S, Guayazan-Palacios N, Steinbrenner A D. 2022. Molecular Tug-of-War: Plant immune recognition of herbivory. Plant Cell, 34, 1497–1513
Steinbrenner A D, Munoz-Amatriain M, Chaparro A F, Aguilar-Venegas J M, Lo S, Okuda S, Glauser G, Dongiovanni J, Shi D, Hall M, Crubaugh D, Holton N, Zipfel C, Abagyan R, Turlings T C J, Close T J, Huffaker A, Schmelz E A. 2020. A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 117, 31510–31518.
Stringlis I A, Pieterse C M J. 2021. Evolutionary “hide and seek” between bacterial flagellin and the plant immune system. Cell Host & Microbe, 29, 548–550.
Su Q, Peng Z, Tong H, Xie W, Wang S, Wu Q, Zhang J, Li C, Zhang Y. 2019. A salivary ferritin in the whitefly suppresses plant defenses and facilitates host exploitation. Journal of Experimental Botany, 70, 3343–3355.
Sugio A, Maclean A M, Hogenhout S A. 2014. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytologist, 202, 838–848.
Takai H, Ozawa R, Takabayashi J, Fujii S, Arai K, Ichiki R T, Koeduka T, Dohra H, Ohnishi T, Taketazu S, Kobayashi J, Kainoh Y, Nakamura S, Fujii T, Ishikawa Y, Kiuchi T, Katsuma S, Uefune M, Shimada T, Matsui K. 2018. Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Scientific Reports, 8, 11942.
Tatchell R. 1969. The ionic regulatory role of the salivary secretion of the cattle tick, Boophilus microplus. Journal of Insect Physiology, 15, 1421–1430.
Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E, Francis F, Luthe D S, Felton G W. 2012. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS ONE, 7, e36168.
Tian T, Ji R, Fu J, Li J, Wang L, Zhang H, Yang S, Ye W, Fang J, Zhu-Salzman K. 2021. A salivary calcium-binding protein from Laodelphax striatellus acts as an effector that suppresses defense in rice. Pest Management Science, 77, 2272–2281.
Upson J L, Zess E K, Białas A, Wu C H, Kamoun S. 2018. The coming of age of EvoMPMI: Evolutionary molecular plant-microbe interactions across multiple timescales. Current Opinion in Plant Biology, 44, 108–116.
Wang H, Shi S, Hua W. 2023. Advances of herbivore-secreted elicitors and effectors in plant–insect interactions. Frontiers in Plant Science, 14, 1176048.
Wang L, Einig E, Almeida-Trapp M, Albert M, Fliegmann J, Mithofer A, Kalbacher H, Felix G. 2018. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nature Plants, 4, 152–156.
Wang N, Zhao P, Ma Y, Yao X, Sun Y, Huang X, Jin J, Zhang Y, Zhu C, Fang R, Ye J. 2019. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance. Philosophical Transactions of the Royal Society (B: Biological Sciences), 374, 20180313.
Wang Q, Yuan E, Ling X, Zhu-Salzman K, Guo H, Ge F, Sun Y. 2020. An aphid facultative symbiont suppresses plant defence by manipulating aphid gene expression in salivary glands. Plant, Cell and Environment, 43, 2311–2322.
Wang W, Dai H, Zhang Y, Chandrasekar R, Luo L, Hiromasa Y, Sheng C, Peng G, Chen S, Tomich J M, Reese J, Edwards O, Kang L, Reeck G, Cui F. 2015. Armet is an effector protein mediating aphid-plant interactions. FASEB Journal, 29, 2032–2045.
Wang Y, Tang M, Hao P, Yang Z, Zhu L, He G. 2008. Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata, 129, 295–307.
Wang Y M, He Y Z, Ye X T, Guo T, Pan L L, Liu S S, Ng J C, Wang X W. 2022. A balance between vector survival and virus transmission is achieved through JAK/STAT signaling inhibition by a plant virus. Proceedings of the National Academy of Sciences of the United States of America, 119, e2122099119.
Wang Y Z, Ye Y X, Lu J B, Wang X, Lu H B, Zhang Z L, Ye Z X, Lu Y W, Sun Z T, Chen J P, Li J M, Zhang C X, Huang H J. 2023. Horizontally transferred salivary protein promotes insect feeding by suppressing ferredoxin-mediated plant defenses. Molecular Biology and Evolution, 40, msad221.
Wu D, Lei K, Wang D, Fu Z Q. 2024. Effector-triggered and self-regulated plant resistance to insects. Trends in Plant Science, 29, 1–3.
Wu D, Qi T, Li W X, Tian H, Gao H, Wang J, Ge J, Yao R, Ren C, Wang X B, Liu Y, Kang L, Ding S W, Xie D. 2017. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 27, 402–415.
Wu J, Baldwin I T. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics, 44, 1–24.
Xu H X, Qian L X, Wang X W, Shao R X, Hong Y, Liu S S, Wang X W. 2019. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 116, 490–495.
Yamasaki Y, Sumioka H, Takiguchi M, Uemura T, Kihara Y, Shinya T, Galis I, Arimura G I. 2021. Phytohormone-dependent plant defense signaling orchestrated by oral bacteria of the herbivore Spodoptera litura. New Phytologist, 231, 2029–2038.
Yan Z W, Chen F Y, Zhang X, Cai W J, Chen C Y, Liu J, Wu M N, Liu N J, Ma B, Wang M Y, Chao D Y, Gao C J, Mao Y B. 2023. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nature Communications, 14, 6551.
Ye W, Yu H, Jian Y, Zeng J, Ji R, Chen H, Lou Y. 2017. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice. Scientific Reports, 7, 40498.
Yoshinaga N, Aboshi T, Abe H, Nishida R, Alborn H T, Tumlinson J H, Mori N. 2008. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proceedings of the National Academy of Sciences of the United States of America, 105, 18058–18063.
Yoshinaga N, Alborn H T, Nakanishi T, Suckling D M, Nishida R, Tumlinson J H, Mori N. 2010. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. Journal of Chemical Ecology, 36, 319–325.
Zeng J, Ye W, Hu W, Jin X, Kuai P, Xiao W, Jian Y, Turlings T C J, Lou Y. 2023. The N-terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice. New Phytologist, 238, 1230–1244
Zhang Y, Fu Y, Liu X, Francis F, Fan J, Liu H, Wang Q, Sun Y, Zhang Y, Chen J. 2023. SmCSP4 from aphid saliva stimulates salicylic acid-mediated defence responses in wheat by interacting with transcription factor TaWKRY76. Plant Biotechnology Journal, 21, 2389–2407.
Zhang Y, Liu X, Francis F, Xie H, Fan J, Wang Q, Liu H, Sun Y, Chen J. 2022a. The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defence and is essential for enabling aphid feeding on host plants. Plant Biotechnology Journal, 20, 2187–2201.
Zhang Y, Liu X, Fu Y, Crespo-Herrera L, Liu H, Wang Q, Zhang Y, Chen J. 2022b. Salivary effector Sm9723 of grain aphid Sitobion miscanthi suppresses plant defense and is essential for aphid survival on wheat. International Journal of Molecular Sciences, 23, 6909.
Zhang Y, Song G, Lal N K, Nagalakshmi U, Li Y, Zheng W, Huang P J, Branon T C, Ting A Y, Walley J W, Dinesh-Kumar S P. 2019. TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nature Communications, 10, 3252.
Zhao C, Escalante L N, Chen H, Benatti T R, Qu J, Chellapilla S, Waterhouse R M, Wheeler D, Andersson M N, Bao R, Batterton M, Behura S K, Blankenburg K P, Caragea D, Carolan J C, Coyle M, El-Bouhssini M, Francisco L, Friedrich M, Gill N. 2015. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Current Biology, 25, 613–620.
Zhao J, Liu Y, Xu S, Wang J, Zhang Z, Wang M Q, Turlings T C, Zhang P, Zhou A. 2023. Mealybug salivary microbes inhibit induced plant defenses. Pest Management Science, 79, 4034–4047.
|