Aguilar-Marin S B, Betancur-Murillo C L, Isaza G A, Mesa H, Jovel J. 2020. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiology, 20, 1–13.
Ahn Y J, Park S J, Lee S G, Shin S C, Choi D H. 2000. Cordycepin: Selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry, 48, 2744–2748.
Amanzougarene Z, Fondevila M. 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10, 1935.
Amaretti A, Gozzoli C, Simone M, Raimondi S, Righini L, Pérez-Brocal V, García-López R, Moya A, Rossi M. 2019. Profiling of protein degraders in cultures of human gut microbiota. Frontiers in Microbiology, 10, 2614.
An Y, Li Y, Wang X, Chen Z, Xu H, Wu L, Li S, Wang C, Luan W, Wang X. 2018. Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease, 17, 1–10.
Baker S. 1999. Rumen methanogens, and inhibition of methanogenesis. Australian Journal of Agricultural Research, 50, 1293–1298.
Barbosa A L, Voltolini T V, Menezes D R, De Moraes S A, Nascimento J C S, De Souza Rodrigues R T. 2018. Intake, digestibility, growth performance, and enteric methane emission of Brazilian semiarid non-descript breed goats fed diets with different forage to concentrate ratios. Tropical Animal Health and Production, 50, 283–289.
Broderick G A, Kang J H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63, 64–75.
Cheng Y, Shi Q, Sun R, Liang D, Li Y, Li Y, Jin W, Zhu W. 2018. The biotechnological potential of anaerobic fungi on fiber degradation and methane production. World Journal of Microbiology and Biotechnology, 34, 155.
Cottle D J, Nolan J V, Wiedemann S G. 2011. Ruminant enteric methane mitigation: A review. Animal Production Science, 51, 491–514.
Cunningham K, Manson W, Spring F, Hutchinson S. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature, 166, 949.
Dini Y, Gere J I, Cajarville C, Ciganda V S. 2018. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in south America. Animal Production Science, 58, 2329–2334.
Elghandour M M Y, Kholif A E, Salem A Z M, Olafadehan O A, Kholif A M. 2016. Sustainable anaerobic rumen methane and carbon dioxide productions from prickly pear cactus flour by organic acid salts addition. Journal of Cleaner Production, 139, 1362–1369.
Ellis J E, Mcintyre P S, Saleh M, Williams A G, Lloyd D. 1991. Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Applied and Environmental Microbiology, 57, 1400–1407.
Fan Q, Wanapat M, Hou F. 2021. Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau. Animal Bioscience, 34, 1466–1478.
Feng Z D, Zhong Y F, He G L, Sun H, Chen Y J, Zhou W H, Lin S M. 2022. Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Fish & Shellfish Immunology, 120, 706–715.
Garcia J L, Patel B K C, Ollivier B. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 6, 205–226.
Goodrich R, Garrett J, Gast D, Kirick M, Larson D, Meiske J. 1984. Influence of monensin on the performance of cattle. Journal of Animal Science, 58, 1484–1498.
Hatew B, Cone J W, Pellikaan W F, Podesta S C, Bannink A, Hendriks W H, Dijkstra J. 2015. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Animal Feed Science and Technology, 202, 20–31.
Hossein-Zadeh N G. 2023. A meta-analysis of the genetic contribution to greenhouse gas emission in sheep. Journal of Animal Breeding Genetics, 140, 49–59.
Hook S E, Wright A D, Mcbride B W. 2010. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea, 2010, 945785.
Hristov A N, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E. 2013. Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, 91, 5095–5113.
Hu W L, Liu J X, Ye J A, Wu Y M, Guo Y Q. 2005. Effect of tea saponin on rumen fermentation in vitro. Animal Feed Science and Technology, 120, 333–339.
Huang F, Li W, Xu H, Qin H, He Z G. 2019. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PLoS ONE, 14, e0218449.
IPCC (Intergovernmental Panel on Climate Change). 2019. Climate Change and Land: An Intergovernmental Panel on Climate Change Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.
Jiang Q, Lou Z, Wang H, Chen C. 2019. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis. Journal of Microbiology, 57, 288–297.
Jin W, Cheng Y F, Mao S Y, Zhu W Y. 2011. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresource Technology, 102, 7925–7931.
Kim W, Hanigan M, Lee S, Lee S, Kim D, Hyun J, Yeo J, Lee S. 2014. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions. Journal of Dairy Science, 97, 7065–7075.
Lee S J, Lee Y J, Eom J S, Kim H S, Choi Y Y, Jo S U, Kang S N, Park H Y, Kim D H, Lee S S. 2020. Effects of the appropriate addition of antioxidants from Pinus densiflora and Mentha canadensis extracts on methane emission and rumen fermentation. Animals, 10, 1888.
Li Q S, Wang R, Ma Z Y, Zhang X M, Jiao J Z, Zhang Z G, Ungerfeld E M, Yi K L, Zhang B Z, Long L, Long Y, Tao Y, Huang T, Greening C, Tan Z L, Wang M. 2022. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. ISME Journal, 16, 2535–2546.
Li Y, Gao J, Lv J, Lambo M T, Wang Y, Wang L, Zhang Y. 2023. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. Journal of Dairy Science, 106, 1803–1814.
Li Y, Jin W, Mu C, Cheng Y, Zhu W. 2017. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate. Journal of Basic Microbiology, 57, 933–940.
Li Y, Lv J, Wang J, Zhou S, Zhang G, Wei B, Sun Y, Lan Y, Dou X, Zhang Y. 2021. Changes in carbohydrate composition in fermented total mixed ration and its effects on in vitro methane production and microbiome. Frontiers in Microbiology, 12, 738334.
Liang J, Nabi M, Zhang P, Zhang G, Cai Y, Wang Q, Zhou Z, Ding Y. 2020. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 134, 110335.
Lyu Z, Shao N, Akinyemi T, Whitman W B. 2018. Methanogenesis. Current Biology, 28, R727–R732.
Macome F M, Pellikaan W F, Hendriks W H, Warner D, Schonewille J T, Cone J W. 2018. In vitro gas and methane production in rumen fluid from dairy cows fed grass silages differing in plant maturity, compared to in vivo data. Journal of Animal Physiology and Animal Nutrition, 102, 843–852.
McCabe M S, Cormican P, Keogh K, O’connor A, O’hara E, Palladino R A, Kenny D A, Waters S M. 2015. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS ONE, 10, e0133234.
Mikhaylov A, Moiseev N, Aleshin K, Burkhardt T. 2020. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7, 2897–2913.
Miller T L. 2015. Methanobrevibacter. In: Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc, USA. pp. 1–14.
Mustapha N A, Sharuddin S S, Zainudin M H M, Ramli N, Shirai Y, Maeda T. 2017. Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. Journal of Cleaner Production, 165, 621–629.
Nakamura K, Shinozuka K, Yoshikawa N. 2015. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. Journal of Pharmacological Sciences, 127, 53–56.
Nampoothiri V M, Mohini M, Malla B A, Mondal G, Pandita S. 2020. Animal performance, and enteric methane, manure methane and nitrous oxide emissions from Murrah buffalo calves fed diets with different forage-to-concentrate ratios. Animal Production Science, 60, 780–789.
Newbold C J, Ramos-Morales E. 2020. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal, 14, s78-s86.
NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle: 2001. National Academies Press, USA.
Odongo N, Bagg R, Vessie G, Dick P, Or-Rashid M, Hook S, Gray J, Kebreab E, France J, Mcbride B. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science, 90, 1781–1788.
Pacífico C, Petri R M, Ricci S, Mickdam E, Wetzels S U, Neubauer V, Zebeli Q. 2021. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms, 9, 342.
Palangi V, Taghizadeh A, Abachi S, Lackner M. 2022. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability, 14, 13229.
Paterson R R. 2008. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 69, 1469–1495.
Qin P, Li X, Yang H, Wang Z Y, Lu D. 2019. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules, 24, 2231.
Qiu X, Qin X, Chen L, Chen Z, Hao R, Zhang S, Yang S, Wang L, Cui Y, Li Y. 2022. Serum biochemical parameters, rumen fermentation, and rumen bacterial communities are partly driven by the breed and sex of cattle when fed high-grain diet. Microorganisms, 10, 323.
Ramos A F, Terry S A, Holman D B, Breves G, Pereira L G, Silva A G, Chaves A V. 2018. Tucumã oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate diet. Frontiers in Microbiology, 9, 1647.
Ranilla M J, Jouany J P, Morgavi D P. 2007. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Letters in Applied Microbiology, 45, 675–680.
Ren H, Su X, Bai H, Yang Y, Wang H, Dan Z, Lu J, Wu S, Cai C, Cao Y. 2019. Specific enrichment of microbes and increased ruminal propionate production: The potential mechanism underlying the high energy efficiency of Holstein heifers fed steam-flaked corn. AMB Express, 9, 1–11.
Santra A, Karim S. 2003. Rumen manipulation to improve animal productivity. Asian-australasian Journal of Animal Sciences, 16, 748–763.
Sheng D D, Zhao S M, Gao L, Zheng H F, Liu W T, Hou J, Jin Y X, Ye F, Zhao Q D, Li R, Zhao N P, Zhang L, Han Z P, Wei L X. 2019. BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling. Cell and Bioscience, 9, 77.
Shin S, Moon S, Park Y, Kwon J, Lee S, Lee C K, Cho K, Ha N J, Kim K. 2009. Role of cordycepin and adenosine on the phenotypic switch of macrophages via induced anti-inflammatory cytokines. Immune Network, 9, 255–264.
Siegert M, Li X F, Yates M D, Logan B E. 2014. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers in Microbiology, 5, 778.
Soliva C, Hess H. 2007. Measuring methane emission of ruminants by in vitro and in vivo techniques. Measuring Methane Production from Ruminants, Springer, Germany.pp.15–31.
Tapio I, Snelling T J, Strozzi F, Wallace R J. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 8, 7.
Thakur S, Mohini M, Malik T A, Howal S, Varun T K, Madavi A, Yadev R D, Mondal G, Datt C. 2021. Performance of crossbred goat kids fed with diets varying in concentrate-to-forage ratio: Intake, nutrient utilization, enteric methane emission and body weight changes. Biological Rhythm Research, 52, 1334–1341.
Thompson L R, Rowntree J E. 2020. Invited review: Methane sources, quantification, and mitigation in grazing beef systems. Applied Animal Science, 36, 556–573.
Tuli H S, Sharma A K, Sandhu S S, Kashyap D. 2013. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sciences, 93, 863–869.
Vargas J E, Andrés S, López-Ferreras L, Snelling T J, Yáñez-Ruíz D R, García-Estrada C, López S. 2020. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific Reports, 10, 1–9.
Wang J K, Ye J A, Liu J X. 2012. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance-a review. Tropical Animal Health and Production, 44, 697–706.
Wang K, Xiong B, Zhao X. 2022. Could propionate formation be used to reduce enteric methane emission in ruminants? Science of the Total Environment, 855, 158867.
Wang Y, Yu Q, Wang X, Song J, Lambo M T, Huang J, He P, Li Y, Zhang Y. 2023. Replacing alfalfa hay with industrial hemp ethanol extraction byproduct and Chinese wildrye hay: Effects on lactation performance, plasma metabolites, and bacterial communities in Holstein cows. Frontiers in Veterinary Science, 10, 1061219.
Wei X, Ouyang K, Long T, Liu Z, Li Y, Qiu Q. 2022. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation. Fermentation, 8, 276.
Wei Z, Zhang B, Liu J. 2018. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover. Journal of Animal Science and Biotechnology, 9, 20.
Xin H S, Khan N A, Liu X, Jiang X, Sun F, Zhang S Z, Sun Y K, Zhang Y G, Li X. 2021. Profiles of odd- and branched-chain fatty acids and their correlations with rumen fermentation parameters, microbial protein synthesis, and bacterial populations based on pure carbohydrate incubation in vitro. Frontiers in Nutrition, 8, 733352.
Yang C, Xu Z, Deng Q, Huang Q, Wang X, Huang F. 2020. Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice. Food Research International, 131, 108994.
Zain-Ul-Abedin, Lopez J M, Freese E. 1983. Induction of bacterial differentiation by adenine-and adenosine-analogs and inhibitors of nucleic acid synthesis. Nucleosides and Nucleotides, 2, 257–274.
Zhang N N, Hu G J, Guo K, Fu T, Lian H X, Wang L F, Gao T Y. 2021. Rumen bacteria and epithelial metSabolism contribute to improving N utilization efficiency of calves. Animal Biotechnology, 33, 1480–1491.
Zhao L, Caro E, Holman D B, Gzyl K E, Moate P J, Chaves A V. 2020. Ozone decreased enteric methane production by 20% in an in vitro rumen fermentation system. Frontiers in Microbiology, 11, 571537.
Zhou R, Wu J, Lang X, Liu L, Casper D P, Wang C, Zhang L, Wei S. 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science, 103, 2303–2314.
|