Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 845-858    DOI: 10.1016/j.jia.2024.07.038
Section 2: Drivers of grassland ecosystem changes Advanced Online Publication | Current Issue | Archive | Adv Search |
The desertification process alters soil microbial metabolic limitations and their effects on soil carbon sequestration in a Tibetan alpine steppe

Jialuo Yu1, 2, Peili Shi1, 2#, Ning Zong1, 2, Yongxing Cui3, Ge Hou1, 2, Xueying Chen1, 2, Tiancai Zhou4, Xiaofang Huang1, 2

1 Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
3 Institute of Biology, Free University of Berlin, Berlin 14195, Germany
4 State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
 Highlights 
●   Soil microbial metabolism is limited by C and P in the alpine steppe.
●   Microbial C limitation intensified while P limitation relieved during desertification.
●   Plant–soil–microbe interactions has significant impacts on microbial limitations.
●   Microbial CUE significantly decreases at the severely heavy desertification stage.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

作为重要的陆地碳(C)库,脆弱敏感的西藏高寒草原在全球变化和过度放牧的影响下沙化问题日益突出。草地沙化可能会加剧地上植物群落和地下微生物群落的养分限制状态,进而影响高寒草原土壤C储量。土壤氮(N)和磷(P)作为植物生长和微生物代谢的重要养分来源,然而,目前对沙化过程中植物和土壤微生物群落受NP限制情况及其作用机理仍不清楚。本研究利用生态酶化学计量的方法评估了高寒草原五个不同沙化阶段(包含未退化、轻度、中度、重度和极度沙化)下植物和土壤微生物的养分限制状态。研究结果表明:1)土壤微生物代谢主要受CP限制,随沙化程度的加深,植物N限制和微生物C限制有所加剧,微生物P限制得到缓解;(2)植物-土壤-微生物相互作用对微生物CP限制有显著的影响, 解释度分别为72%61%。具体而言,沙化通过调节土壤pH、土壤养分和植物N限制来影响微生物代谢限制;(3)微生物C限制进一步降低了微生物的C利用效率(CUE),从而不利于沙化土壤中有机C的保留。本研究揭示了在植物-微生物相互作用下的微生物代谢限制是影响土壤微生物CUE的关键驱动因素,并为推进微生物调节养分循环和C固存提供了新的见解。



Abstract  

Tibetan alpine steppes are large and sensitive terrestrial carbon (C) reservoirs that are experiencing desertification due to global change and overgrazing, which can lead to stronger resource limitations for both above- and below-ground communities. Soil nutrients, especially nitrogen (N) and phosphorus (P), are the crucial resources for plant growth and microbial metabolism. However, whether both plant and soil microbial communities in the degraded alpine steppes are limited by these soil nutrients remains unclear, which limits our understanding of the mechanisms of desertification and subsequent ecosystem restoration. Here, we evaluated potential nutrient limitations of the plant and soil microbial communities in the alpine steppe across five stages of desertification using stoichiometry-based approaches. Our results showed that soil microbial metabolism was mainly limited by C and P, and the plant N limitation and microbial C limitation were intensified while the microbial P limitation was relieved during desertification. Plant-soil-microbe interactions had significant impacts on the microbial C and P limitations, explaining 72 and 61% of the variation, respectively. Specifically, desertification ultimately affected microbial metabolic limitations by regulating soil pH, soil nutrients, and the plant N limitation. Moreover, the microbial C limitation further reduced microbial C use efficiency (CUE) with desertification, which is detrimental for organic C retention in the degraded soil. Overall, this study revealed that microbial metabolic limitations through plant-microbe interactions were the key drivers affecting soil microbial CUE, and it provided insights that can advance our knowledge of the microbial regulation of nutrient cycles and C sequestration.

Keywords:  desertification gradient       ecoenzymatic stoichiometry        microbial metabolic limitation        carbon use efficiency        alpine steppe  
Received: 25 April 2024   Accepted: 19 June 2024
Fund: 
This study was supported by National Key Research and Development Program of China (2023YFF1304304).
About author:  Jialuo Yu, E-mail: yujialuo18@mails.ucas.ac.cn; #Correspondence Peili Shi, Tel: +86-10-64889686, E-mail: shipl@igsnrr.ac.cn

Cite this article: 

Jialuo Yu, Peili Shi, Ning Zong, Yongxing Cui, Ge Hou, Xueying Chen, Tiancai Zhou, Xiaofang Huang. 2025. The desertification process alters soil microbial metabolic limitations and their effects on soil carbon sequestration in a Tibetan alpine steppe. Journal of Integrative Agriculture, 24(3): 845-858.

Abdalla K, Mutema M, Chivenge P, Everson C, Chaplot V. 2018. Grassland degradation significantly enhances soil CO2 emission. Catena167, 284–292.

Ågren G I, Bosatta E, Magill A H. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia128, 94–98.

Bai X, Wang B, An S, Zeng Q, Zhang H. 2019. Response of forest species to C:N:P in the plant–litter–soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau, China. Catena183, 104186.

Bardgett R D, Bullock J M, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry E L, Johnson D, Lavallee J M, Le Provost G, Luo S, Png K, Sankaran M, Hou X, Zhou H, Ma L, Ren W, Li X, et al. 2021. Combatting global grassland degradation. Nature Reviews Earth & Environment2, 720–735.

Bi B, Wang Y, Wang K, Zhang H, Fei H, Pan R, Han F. 2022. Changes in microbial metabolic C- and N-limitations in the rhizosphere and bulk soils along afforestation chronosequence in desertified ecosystems. Journal of Environmental Management303, 114215.

Bowles T M, Acosta-Martínez V, Calderón F, Jackson L E. 2014. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry68, 252–262.

Breidenbach A, Schleuss P M, Liu S, Schneider D, Dippold M A, de la Haye T, Miehe G, Heitkamp F, Seeber E, Mason-Jones K, Xu X, Huanming Y, Xu J, Dorji T, Gube M, Norf H, Meier J, Guggenberger G, Kuzyakov Y, Spielvogel S. 2022. Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nature Communications13, 2681.

Bremner J M, Mulvaney C S. 1982. Nitrogen-total. In: Page A L, Miller R H, Keeney D R, eds., Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison. pp. 595–624.

Brookes P C, Landman A, Pruden G, Jenkinson D S. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry17, 837–842.

Buckeridge K M, McLaren J R. 2020. Does plant community plasticity mediate microbial homeostasis? Ecology and Evolution10, 5251–5258.

Burns R G, DeForest J L, Marxsen J, Sinsabaugh R L, Stromberger M E, Wallenstein M D, Weintraub M N, Zoppini A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry58, 216–234.

Camenzind T, Hattenschwiler S, Treseder K K, Lehmann A, Rillig M C. 2018. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs88, 4–21.

Cao R, Yang W, Chang C, Wang Z, Wang Q, Li H, Tan B. 2021. Differential seasonal changes in soil enzyme activity along an altitudinal gradient in an alpine-gorge region. Applied Soil Ecology166, 104078.

Capek P T, Manzoni S, Kastovska E, Wild B, Diakova K, Barta J, Schnecker J, Blasi C, Martikainen P J, Alves R J E, Guggenberger G, Gentsch N, Hugelius G, Palmtag J, Mikutta R, Shibistova O, Urich T, Schleper C, Richter A, Santruckova H. 2018. A plant–microbe interaction framework explaining nutrient effects on primary production. Nature Ecology & Evolution2, 1588–1596.

Chen Y, Li Y, Cao W, Wang X, Duan Y, Liu X, Yao C. 2023. Response of the plant–soil system to desertification in the Hulun Buir Sandy Land, China. Land Degradation & Development34, 2024–2037.

Coban O, De Deyn G B, van der Ploeg M. 2022. Soil microbiota as game-changers in restoration of degraded lands. Science375, abe0725.

Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience12, 989–994.

Cui Y, Bing H, Fang L, Jiang M, Shen G, Yu J, Wang X, Zhu H, Wu Y, Zhang X. 2021. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil458, 7–20.

Cui Y, Wang X, Zhang X, Ju W, Duan C, Guo X, Wang Y, Fang L. 2020. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry147, 107814.

Dong C, Wang W, Liu H, Xu X, Zeng H. 2019. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry. Ecological Indicators101, 453–464.

Dong R, Wang X, Wang Y, Ma Y, Yang S, Zhang L, Zhang M, Qin J, Quzha R. 2023. Differences in soil microbial communities with successional stage depend on vegetation coverage and soil substrates in alpine desert shrublands. Plant and Soil485, 549–568.

Dong S, Shang Z, Gao J, Boone R B. 2020. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. AgricultureEcosystems and Environment287, 106684.

Elser J J, Fagan W F, Kerkhoff A J, Swenson N G, Enquist B J. 2010. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist186, 593–608.

Frost P C, Benstead J P, Cross W F, Hillebrand H, Larson J H, Xenopoulos M A, Yoshida T. 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters9, 774–779.

Gao T, Tian H, Wang Z, Shi J, Yang R, Wang F, Xiang L, Dai Y, Megharaj M, He W. 2023. Effects of atrazine on microbial metabolic limitations in black soils: Evidence from enzyme stoichiometry. Chemosphere334, 139045.

German D P, Weintraub M N, Grandy A S, Lauber C L, Rinkes Z L, Allison S D. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry43, 1387–1397.

Geyer K M, Dijkstra P, Sinsabaugh R, Frey S D. 2019. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biology and Biochemistry128, 79–88.

Guo N, Degen A A, Deng B, Shi F, Bai Y, Zhang T, Long R, Shang Z. 2019. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. AgricultureEcosystems and Environment284, 106593.

Harris R B. 2010. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments74, 1–12.

Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D. 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology24, 3344–3356.

Inselsbacher E, Hinko-Najera Umana N, Stange F C, Gorfer M, Schüller E, Ripka K, Zechmeister-Boltenstern S, Hood-Novotny R, Strauss J, Wanek W. 2010. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology and Biochemistry42, 360–372.

Joergensen R G. 1996. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biology and Biochemistry28, 25–31.

Jones D L, Willett V B. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry38, 991–999.

Kalembasa S J, Jenkinson D S. 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture24, 1085–1090.

Koerselman W, Meuleman A F M. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology33, 1441.

Kuzyakov Y, Razavi B S. 2019. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology & Biochemistry135, 343–360.

Li J, Okin G S, Alvarez L, Epstein H. 2007. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry85, 317–332.

Li S, Yang P, Gao S Y, Chen H S, Yao F F. 2004. Dynamic changes and developmental trends of the land desertification in Tibetan Plateau over the past 10 years. Advance in Earth Sciences19, 63–70. (in Chinese)

Li X L, Gao J, Brierley G, Qiao Y M, Zhang J, Yang Y W. 2011. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degradation & Development24, 72–80.

Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

Liu J, Fang L, Qiu T, Bing H, Cui Y, Sardans J, Du E, Chen J, Tan W, Delgado-Baquerizo M, Zhou G, Cui Q, Penuelas J. 2023. Disconnection between plant–microbial nutrient limitation across forest biomes. Functional Ecology37, 2271–2281.

Liu M, Zhang Z C, Sun J, Li Y R, Liu Y, Berihun M L, Xu M, Tsunekawa A, Chen Y J. 2020. Restoration efficiency of short-term grazing exclusion is the highest at the stage shifting from light to moderate degradation at Zoige, Tibetan Plateau. Ecological Indicators114, 106323.

Liu S, Schleuss P M, Kuzyakov Y. 2016. Carbon and nitrogen losses from soil depend on degradation of Tibetan Kobresia pastures. Land Degradation & Development28, 1253–1262.

Manzoni S, Taylor P, Richter A, Porporato A, Ågren G I. 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist196, 79–91.

Mganga K Z, Sietiö O M, Meyer N, Poeplau C, Adamczyk S, Biasi C, Kalu S, Räsänen M, Ambus P, Fritze H, Pellikka P K E, Karhu K. 2022. Microbial carbon use efficiency along an altitudinal gradient. Soil Biology and Biochemistry173, 108799.

Moorhead D L, Sinsabaugh R L, Hill B H, Weintraub M N. 2016. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry93, 1–7.

Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology5, 22.

Ouyang S, Tian Y, Liu Q, Zhang L, Wang R, Xu X. 2016. Nitrogen competition between three dominant plant species and microbes in a temperate grassland. Plant and Soil408, 121–132.

Parkinson J A, Allen S E. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Communications in Soil Science and Plant Analysis6, 1–11.

Persson J, Fink P, Goto A, Hood J M, Jonas J, Kato S. 2010. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos119, 741–751.

Prommer J, Walker T W N, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A. 2019. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology26, 669–681.

Raiesi F, Salek-Gilani S. 2018. The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment. Applied Soil Ecology126, 140–147.

Rosinger C, Rousk J, Sandén H. 2019. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? - A critical assessment in two subtropical soils. Soil Biology and Biochemistry128, 115–126.

Sanchez G, Trinchera L, Russolillo G. 2023. Plspm: Tools for partial least squares path modeling (PLS-PM). [2023-3-13]. https://CRAN.R-project.org/package=plspm

Sinsabaugh R L, Hill B H, Shah J J F. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature462, 795–798.

Sinsabaugh R L, Manzoni S, Moorhead D L, Richter A. 2013. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters16, 930–939.

Sinsabaugh R L, Shah J J F. 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology Evolution and Systematics43, 313–343.

Sokol N W, Sanderman J, Bradford M A. 2018. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology25, 12–24.

Song X, Li J, Liu X, Liang G, Li S, Zhang M, Zheng F, Wang B, Wu X, Wu H. 2022. Altered microbial resource limitation regulates soil organic carbon sequestration based on ecoenzyme stoichiometry under long-term tillage systems. Land Degradation & Development33, 2795–2808.

Sterner R W, Elser J J. 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Journal of Plankton Research25, 1183.

Tan B, Yin R, Zhang J, Xu Z, Liu Y, He S, Zhang L, Li H, Wang L, Liu S, You C, Peng C. 2021. Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems24, 1142–1156.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

Wang D, Zhou H, Yao B, Wang W, Dong S, Shang Z, She Y, Ma L, Huang X, Zhang Z, Zhang Q, Zhao F, Zuo J, Mao Z. 2020. Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: A meta-analysis. AgricultureEcosystems & Environment301, 106970.

Wang Y, Niu D, Yuan X, Guo D, Fu H, Elser J J. 2023. Dominant plant species alter stoichiometric imbalances between soil microbes and their resources in an alpine grassland: Implications for soil microbial respiration. Geoderma431, 116336.

Waring B G, Weintraub S R, Sinsabaugh R L. 2014. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry117, 101–113.

Wen L, Dong S, Li Y, Wang X, Li X, Shi J, Dong Q. 2012. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil368, 329–340.

Xiao L, Liu G, Li P, Li Q, Xue S. 2020. Ecoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess Plateau, China. Soil and Tillage Research200, 104605.

Xu Z, Yu G, Zhang X, He N, Wang Q, Wang S, Wang R, Zhao N, Jia Y, Wang C. 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry104, 152–163.

Yang J, Wu X, Ruan H, Song Y, Xu M, Wang S, Wang D, Wu D. 2023. How does grassland degradation affect soil enzyme activity and microbial nutrient limitation in saline-alkaline meadow? Land Degradation & Development34, 5863–5875.

Yu J, Bing H, Chang R, Cui Y, Shen G, Wang X, Zhang S, Fang L. 2022a. Microbial metabolic limitation response to experimental warming along an altitudinal gradient in alpine grasslands, eastern Tibetan Plateau. Catena214, 106243.

Yu J, Hou G, Zhou T, Shi P, Zong N, Sun J. 2022b. Variation of plant CSR strategies across a precipitation gradient in the alpine grasslands on the northern Tibet Plateau. Science of the Total Environment838, 156512.

Zeng Q, Liu Y, Fang Y, Ma R, Lal R, An S, Huang Y. 2017. Impact of vegetation restoration on plants and soil C:N:P stoichiometry on the Yunwu Mountain Reserve of China. Ecological Engineering109, 92–100.

Zhang G, Kang Y, Han G, Mei H, Sakurai K. 2011. Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agriculturae Scandinavica (Section B: Soil and Plant Science), 4, 356–364.

Zhang W, Xue X, Peng F, You Q, Hao A. 2019. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Global Ecology and Conservation20, e00774.

Zhang Y L, Chen L J, Chen X H, Tan M L, Duan Z H, Wu Z J, Li X J, Fan X H. 2015. Response of soil enzyme activity to long-term restoration of desertified land. Catena133, 64–70.

Zhao Y, Wang H, Guo T, Li Z, Mi W, Cao Z. 2023. Response of soil C-, N-, and P-acquisition enzymes to moisture pulses in desert grassland to shrubland state transition. Science of the Total Environment861, 160569.

Zhou T, Hou G, Sun J, Zong N, Shi P. 2021a. Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of the Total Environment800, 149572.

Zhou T, Zong N, Sun J, Hou G, Shi P. 2021b. Plant nitrogen concentration is more sensitive in response to degradation than phosphorus concentration in alpine meadow. Ecological Engineering169, 106323.

Zong N, Fu G. 2021. Variations in species and function diversity of soil fungal community along a desertification gradient in an alpine steppe. Ecological Indicators131, 108197.

Zong N, Shi P. 2020. Soil properties rather than plant production strongly impact soil bacterial community diversity along a desertification gradient on the Tibetan Plateau. Grassland Science66, 197–206.

Zuo X, Zhao H, Zhao X, Guo Y, Yun J, Wang S, Miyasaka T. 2008. Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China. Environmental Geology58, 1227–1237.

No related articles found!
No Suggested Reading articles found!