Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3264-3282    DOI: 10.1016/j.jia.2024.06.011
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification of the pectate lyase (PEL) gene family members in Malvaceae, and their contribution to cotton fiber quality

Qian Deng1, Zeyu Dong1, Zequan Chen1, Zhuolin Shi1, Ting Zhao1, Xueying Guan1, 2, Yan Hu1, 2, Lei Fang1, 2#

1 Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China 
2 Hainan Institute, Zhejiang University, Sanya 572025, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

果胶是植物细胞壁的主要组成成分之一。果胶酸裂解酶通过 β-消除作用随机切割 α 1,4-糖苷键,产生不饱和的4,5-低聚半乳糖醛酸,导致同聚半乳糖醛酸解聚。然而,有关锦葵科植物中果胶酸裂解酶基因家族的进化与比较分析的研究十分有限。本研究从10个锦葵科植物中鉴定到了597个非冗余的PEL基因家族成员。系统发育树和保守基序分析结果显示,PEL基因家族可分为六个亚家族,分别是:Clade IIIIIIIVVaVb其中,亚家族Clade III中的成员数量最多,分别为237222个成员。Clade VaVb亚家族的PEL基因包含四到五个Motif,比其他亚家族要少得多棉花中PEL家族成员主要通过片段复制事件进行扩增。陆地棉和海岛棉中,Clade IIVVaVb亚家族成员在棉纤维伸长阶段具有较高的表达水平,Clade II和III亚家族中几乎所有PEL成员在本研究中检测的所有纤维发育阶段都没有表达量。在陆地棉和海岛棉群体中通过单基因关联分析,鉴定到14个与纤维长度和强度性状显著相关的GbPELs,而在陆地棉群体中,仅鉴定到8GhPEL基因与纤维品质性状显著关联。本研究对PEL基因进行全基因组鉴定和比较分析,为该基因在棉纤维品质改良中的潜在利用价值提供了重要支撑。



Abstract  
Pectin is a major constituent of the plant cell wall.  Pectate lyase (PEL, EC 4.2.2.2) uses anti-β-elimination chemistry to cleave the α-1,4 glycosidic linkage in the homogalacturonan region of pectin.  However, limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.  In this study, we identified 597 PEL genes from 10 Malvaceae species.  Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies: Clades I, II, III, IV, Va, and Vb.  The two largest subfamilies, Clades I and II, contained 237 and 222 PEL members, respectively.  The members of Clades Va and Vb only contained four or five motifs, far fewer than the other subfamilies.  Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.  The PELs from Clades I, IV, Va, and Vb were expressed during the fiber elongation stage, but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.  We further performed single-gene haplotype association analysis in 2,001 Ghirsutum accessions and 229 Gbarbadense accessions.  Interestingly, 14 PELs were significantly associated with fiber length and strength traits in Gbarbadense with superior fiber quality, while only eight GhPEL genes were found to be significantly associated with fiber quality traits in Ghirsutum.  Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.


Keywords:  Malvaceae       pectate lyase (PEL)        Gossypium species        fiber quality  
Received: 23 February 2024   Accepted: 06 May 2024
Fund: 
This study was supported by the Ministry of Agriculture and Rural Affairs, China (2023ZD04039-01), the National Natural Science Foundation of China (32172008), and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, China (2019R01002).  
About author:  #Correspondence Lei Fang, E-mail: fangl@zju.edu.cn

Cite this article: 

Qian Deng, Zeyu Dong, Zequan Chen, Zhuolin Shi, Ting Zhao, Xueying Guan, Yan Hu, Lei Fang. 2024. Genome-wide identification of the pectate lyase (PEL) gene family members in Malvaceae, and their contribution to cotton fiber quality. Journal of Integrative Agriculture, 23(10): 3264-3282.

Agrawal P B, Nierstrasz V A, Klug-Santner B G, Gübitz G M, Lenting H B M, Warmoeskerken M M C G. 2007. Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnology Journal2, 306–315.

Akashi H. 2001. Gene expression and molecular evolution. Current Opinion in Genetics & Development11, 660–666.

Al-Ghazi Y, Bourot S, Arioli T, Dennis E S, Llewellyn D J. 2009. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant & Cell Physiology50, 1364–1381.

Argout X, Martin G, Droc G, Fouet O, Labadie K, Rivals E, Aury J M, Lanaud C. 2017. The cacao Criollo genome v2.0: An improved version of the genome for genetic and functional genomic studies. BMC Genomics18, 730.

Atmodjo M A, Hao Z, Mohnen D. 2013. Evolving views of pectin biosynthesis. Annual Review of Plant Biology64, 747–779.

Bai Y, Tian D, Chen P, Wu D, Du K, Zheng B, Shi X. 2023. A pectate lyase gene plays a critical role in xylem vascular development in ArabidopsisInternational Journal of Molecular Sciences24, 10883.

Bai Y, Wu D, Liu F, Li Y, Chen P, Lu M, Zheng B. 2017. Characterization and functional analysis of the poplar pectate lyase-like gene PtPL1-18 reveal its role in the development of vascular tissues. Frontiers in Plant Science8, 1123.

Bailey T L, Boden M, Buske F A, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble W S. 2009. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research37, W202–W208.

Bush M, Sethi V, Sablowski R. 2022. A phloem-expressed PECTATE LYASE-LIKE gene promotes cambium and xylem development. Frontiers in Plant Science13, 888201.

Caffall K H, Mohnen D. 2009. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research344, 1879–1900.

Cannon S B, Mitra A, Baumgarten A, Young N D, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thalianaBMC Plant Biology4, 10.

Chen J, Burke J J. 2015. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton. PLoS ONE10, e0129870.

Chen Z J, Sreedasyam A, Ando A, Song Q, De Santiago L M, Hulse-Kemp A M, Ding M, Ye W, Kirkbride R C, Jenkins J, Plott C, Lovell J, Lin Y M, Vaughn R, Liu B, Simpson S, Scheffler B E, Wen L, Saski C A, Grover C E, et al. 2020. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics52, 525–533.

Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly6, 80–92.

Cosgrove D J. 2005. Growth of the plant cell wall. Nature Reviews of Molecular Cell Biology6, 850–861.

Emms D M, Kelly S. 2015. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology16, 157.

Fang L, Guan X, Zhang T. 2017. A symmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.). The Crop Journal5, 159–165.

Fang L, Zhao T, Hu Y, Si Z, Zhu X, Han Z, Liu G, Wang S, Ju L, Guo M, Mei H, Wang L, Qi B, Wang H, Guan X, Zhang T. 2021. Divergent improvement of two cultivated allotetraploid cotton species. Plant Biotechnology Journal19, 1325–1336.

Finn R D, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy S R, Sonnhammer E L L, Bateman A. 2006. Pfam: Clans, web tools and services. Nucleic Acids Research34, D247-D251.

Ganal M W, Altmann T, Röder M S. 2009. SNP identification in crop plants. Current Opinion in Plant Biology12, 211–217.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science3, 104.

Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M U, Han J, Wang K, Wang Q, Wu H, Mei G, et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics51, 739–748.

Huang G, Wu Z, Percy R G, Bai M, Li Y, Frelichowski J E, Hu J, Wang K, Yu J Z, Zhu Y. 2020. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics52, 516–524.

Jiang J, Yao L, Miao Y, Cao J. 2013. Genome-wide characterization of the Pectate Lyase-like (PLL) genes in Brassica rapaMolecular Genetics and Genomics288, 601–614.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution30, 772–780.

Ke X, Wang H, Li Y, Zhu B, Zang Y, He Y, Cao J, Zhu Z, Yu Y. 2018. Genome-wide identification and analysis of polygalacturonase genes in Solanum iycopersicumInternational Journal of Molecular Sciences19, 2290.

Koonin E V, Rogozin I B. 2003. Getting positive about selection. Genome Biology4, 331.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: An information aesthetic for comparative genomics. Genome Research19, 1639–1645.

Lamesch P, Berardini T Z, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M, Karthikeyan A S, Lee C H, Nelson W D, Ploetz L, Singh S, Wensel A, Huala E. 2012. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research40, D1202–D1210.

Lee J J, Woodward A W, Chen Z J. 2007. Gene expression changes and early events in cotton fibre development. Annals of Botany100, 1391–1401.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research30, 325–327.

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research49, W293–W296.

Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, et al. 2015. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology33, 524–530.

Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, et al. 2014. Genome sequence of the cultivated cotton Gossypium arboreumNature Genetics46, 567–572.

Li Y, Si Z, Wang G, Shi Z, Chen J, Qi G, Jin S, Han Z, Gao W, Tian Y, Mao Y, Fang L, Hu Y, Chen H, Zhu X, Zhang T. 2023. Genomic insights into the genetic basis of cotton breeding in China. Molecular Plant16, 662–677.

Liang Z, Schnable J C. 2018. Functional divergence between subgenomes and gene pairs after whole genome duplications. Molecular Plant11, 388–397.

Lynch M, Conery J S. 2000. The evolutionary fate and consequences of duplicate genes. Science290, 1151–1155.

Ma Y, Wang C, Gao Z, Yao Y, Kang H, Du Y. 2023. VvPL15 Is the Core member of the pectate lyase gene family involved in grape berries ripening and softening. International Journal of Molecular Sciences24, 9318.

Ma Z, Zhang Y, Wu L, Zhang G, Sun Z, Li Z, Jiang Y, Ke H, Chen B, Liu Z, Gu Q, Wang Z, Wang G, Yang J, Wu J, Yan Y, Meng C, Li L, Li X, Mo S, et al. 2021. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics53, 1385–1391.

Marchler-Bauer A, Bryant S H. 2004. CD-Search: Protein domain annotations on the fly. Nucleic Acids Research32, W327–W331.

Marín-Rodríguez M C, Orchard J, Seymour G B. 2002. Pectate lyases, cell wall degradation and fruit softening. Journal of Experimental Botany53, 2115–2119.

Mirarab S, Reaz R, Bayzid M S, Zimmermann T, Swenson M S, Warnow T. 2014. ASTRAL: Genome-scale coalescent-based species tree estimation. Bioinformatics30, i541–i548.

Mistry J, Finn R D, Eddy S R, Bateman A, Punta M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research41, e121.

Palusa S G, Golovkin M, Shin S B, Richardson D N, Reddy A S N. 2007. Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in ArabidopsisThe New Phytologist174, 537–550.

Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature492, 423–427.

Payasi A, Sanwal G G. 2003. Pectate lyase activity during ripening of banana fruit. Phytochemistry63, 243–248.

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto B L, Salazar G A, Bileschi M L, Bork P, Bridge A, Colwell L, Gough J, Haft D H, Letunić I, Marchler-Bauer A, Mi H, Natale D A, Orengo C A, Pandurangan A P, Rivoire C, Sigrist C J A, et al. 2023. InterPro in 2022. Nucleic Acids Research51, D418–D427.

Pei Y Y, Wang Y K, Wei Z Z, Liu J, Li Y H, Ma S Y, Wang Y, Li F G, Peng J, Wang Z. 2024. Pectin methylesterase inhibitors GhPMEI53 and AtPMEI19 improve seed germination by modulating cell wall plasticity in cotton and ArabidopsisJournal of Integrative Agriculture23, 3487–3505.

Price M N, Dehal P S, Arkin A P. 2010. FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS ONE5, e9490.

Roulin A, Auer P L, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge R W, Jackson S A. 2013. The fate of duplicated genes in a polyploid plant genome. The Plant Journal73, 143–153.

Said J I, Knapka J A, Song M, Zhang J. 2015. Cotton QTLdb: A cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and Ghirsutum×Gbarbadense populations. Molecular Genetics and Genomics290, 1615–1625.

Sloan D B, Wu Z, Sharbrough J. 2018. Correction of Persistent errors in Arabidopsis reference mitochondrial genomes. The Plant Cell30, 525–527.

Solbak A I, Richardson T H, McCann R T, Kline K A, Bartnek F, Tomlinson G, Tan X, Parra-Gessert L, Frey G J, Podar M, Luginbühl P, Gray K A, Mathur E J, Robertson D E, Burk M J, Hazlewood G P, Short J M, Kerovuo J. 2005. Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. The Journal of Biological Chemistry280, 9431–9438.

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H. 2004. Toward a systems approach to understanding plant cell walls. Science306, 2206–2211.

Starr M P, Moran F. 1962. Eliminative split of pectic substances by phytopathogenic soft-rot bacteria. Science135, 920–921.

Sun H, Hao P, Gu L, Cheng S, Wang H, Wu A, Ma L, Wei H, Yu S. 2020. Pectate lyase-like gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. Plant Science293, 110395.

Sun H, Hao P, Ma Q, Zhang M, Qin Y, Wei H, Su J, Wang H, Gu L, Wang N, Liu G, Yu S. 2018. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium hirsutum L.). BMC Genomics19, 661.

Sun L, van Nocker S. 2010. Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in ArabidopsisBMC Plant Biology10, 152.

Suo J, Liang X, Pu L, Zhang Y, Xue Y. 2003. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimica et Biophysica Acta1630, 25–34.

Taylor J S, Raes J. 2004. Duplication and divergence: The evolution of new genes and old ideas. Annual Review of Genetics38, 615–643.

Teh B T, Lim K, Yong C H, Ng C C Y, Rao S R, Rajasegaran V, Lim W K, Ong C K, Chan K, Cheng V K Y, Soh P S, Swarup S, Rozen S G, Nagarajan N, Tan P. 2017. The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics49, 1633–1641.

Tian Z, Shi H, Maria M, Zheng J. 2019. Pectate lyase is a factor in the adaptability for Heterodera glycines infecting tobacco. Journal of Integrative Agriculture18, 618–626.

Vanneste K, Baele G, Maere S, Van de Peer Y. 2014. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research24, 1334–1347.

Vogel J P, Raab T K, Schiff C, Somerville S C. 2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in ArabidopsisThe Plant Cell14, 2095–2106.

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. GenomicsProteomics & Bioinformatics8, 77–80.

Wang H, Guo Y, Lv F, Zhu H, Wu S, Jiang Y, Li F, Zhou B, Guo W, Zhang T. 2010. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. Plant Molecular Biology72, 397–406.

Wang J, Yuan J, Yu J, Meng F, Sun P, Li Y, Yang N, Wang Z, Pan Y, Ge W, Wang L, Li J, Liu C, Zhao Y, Luo S, Ge D, Cui X, Feng G, Wang Z, Ji L, et al. 2019. Recursive paleohexaploidization shaped the durian genome. Plant Physiology179, 209–219.

Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, et al. 2012. The draft genome of a diploid cotton Gossypium raimondiiNature Genetics44, 1098–1103.

Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, Xu Z, Pei L, Grover C E, Wendel J F, Wang K, Zhang X. 2021. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Molecular Biology and Evolution38, 3621–3636.

Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research40, e49.

Wen Z, Boyse J F, Song Q, Cregan P B, Wang D. 2015. Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics16, 671.

Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology112, 531–552.

Wing R A, Yamaguchi J, Larabell S K, Ursin V M, McCormick S. 1990. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen ErwiniaPlant Molecular Biology14, 17–28.

Wright S I, Yau C B K, Looseley M, Meyers B C. 2004. Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrataMolecular Biology and Evolution21, 1719–1726.

Xu Z, Dai J, Kang T, Shah K, Li Q, Liu K, Xing L, Ma J, Zhang D, Zhao C. 2022. PpePL1 and PpePL15 are the core members of the pectate lyase gene family involved in peach fruit ripening and softening. Frontiers in Plant Science13, 844055.

Yang Z, Bielawski J P. 2000. Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution15, 496–503.

Yu J, Jung S, Cheng C H, Ficklin S P, Lee T, Zheng P, Jones D, Percy R G, Main D. 2014. CottonGen: A genomics, genetics and breeding database for cotton research. Nucleic Acids Research42, D1229–D1236.

Zhang L, Ma X, Zhang X, Xu Y, Ibrahim A K, Yao J, Huang H, Chen S, Liao Z, Zhang Q, Niyitanga S, Yu J, Liu Y, Xu X, Wang J, Tao A, Xu J, Chen S, Yang X, He Q, et al. 2021. Reference genomes of the two cultivated jute species. Plant Biotechnology Journal19, 2235–2248.

Zhang R, Jia G, Diao X. 2023. geneHapR: An R package for gene haplotypic statistics and visualization. BMC Bioinformatics24, 199.

Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, Dai L. 2012. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochemical and Biophysical Research Communications419, 779–781.

Zheng Y, Yan J, Wang S, Xu M, Huang K, Chen G, Ding Y. 2018. Genome-wide identification of the pectate lyase-like (PLL) gene family and functional analysis of two PLL genes in rice. Molecular Genetics and Genomics293, 1317–1331.

[1] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
[2] WANG Ling-li, ZHENG Shuang-shuang, TONG Pan-pan, CHEN Yan, LIU Wen-zhe. Cytochemical localization of H2O2 in pigment glands of cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1490-1498.
No Suggested Reading articles found!