Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1165-1179    DOI: 10.1016/j.jia.2024.05.007
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Hexanoic acid addition helps to clarify the possible mechanisms of the increased β-carotene content during alfalfa fermentation

Cheng Zong2*, Yuhong Zhao3*, Wanqi Jiang2, Tao Shao2, Xinyu Liang2, Aili Wu2, Qinhua Liu1, 2#

1 Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China

2 Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China 

3 College of Animal Science and Technology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China

 Highlights 
Hexanoic acid modulated β-carotene metabolism during alfalfa ensiling.
Lactobacillus harboring crtNM operon contributed to β-carotene synthesis.
Lactobacillus kullabergensis and Lactobacillus senioris were key positive regulators of β-carotene.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
β-胡萝卜素是维生素A原,具有丰富的生物学功能和广阔的应用前景。最近,我们在β-胡萝卜素损失低的紫花苜蓿青贮饲料中发现了特异性物质—己酸,但己酸对β-胡萝卜素的青贮作用机制尚不清楚。本研究以紫花苜蓿为试验材料,设计了4个己酸添加水平(0,0.05,0.1和0.2%)和遮光黑暗青贮时间(0,10,40和80天)双因素试验,旨在运用crtNM操纵子鉴定法、crtE基因qPCR定量分析和单分子实时测序技术,解析紫花苜蓿在青贮过程中的β-胡萝卜素含量、β-胡萝卜素相关酶活性和细菌群落的动态变化,阐明己酸影响β-胡萝卜素含量的因素和方式。结果显示,青贮80天后,相对于新鲜紫花苜蓿,添加己酸提高了紫花苜蓿青贮饲料β-胡萝卜素含量分别为85.8, 159和133%,增强了Lactobacillus kullabergensis丰度,促进演替出了L. senioris。多元线性回归模型预测出L. kullabergensis, L. apis, L. saniviriL. senioris,过氧化物酶、八氢番茄红素脱氢酶和番茄红素β-环化酶促进了β-胡萝卜素合成,而L. renniniL. brevis抑制了β-胡萝卜素的产生,且前者的合成作用强于后者。综上所述,添加己酸提高紫花苜蓿青贮饲料β-胡萝卜素含量很可能依赖于多个关键调控因子,如4种特异性乳酸菌(L. kullabergensis, L. apis, L. saniviriL. senioris)和3种β-胡萝卜素相关酶(过氧化物酶、八氢番茄红素脱氢酶和番茄红素β-环化酶)。本研究初步探明了紫花苜蓿青贮饲料β-胡萝卜素含量提高的己酸作用机制,为功能性优质青贮饲料的研究和生产奠定了理论基础和添加剂技术支持。


Abstract  

The objectives of this study were to evaluate the effect of hexanoic acid (HA) supplementations (0, as the control, CON; 0.05%, HA1; 0.1%, HA2; 0.2%, HA3) on β-carotene, and ascertain the way and key factors of HA influencing β-carotene content of alfalfa (Medicago sativa L.) after ensiled in an oxygen-free and dark conditions for 10, 40, and 80 d (from May to August, 2021).  This was achieved by examining the dynamic change of β-carotene, activities of β-carotene-related enzymes, and bacterial community succession of ensiled alfalfa, using operon crtNM identification, crtE gene quantitation, and single-molecule real-time sequencing technology.  The results revealed that when compared with the fresh material, terminal alfalfa silage treated with different level of HA supplementations (0, 0.05, 0.1, 0.2%; fresh weight basis) increased β-carotene content up to 2.86, 85.8, 159, and 133%, accordingly.  Meanwhile, alfalfa silage treated with higher levels of HA (0.1 and 0.2%) showed superior effects compared to those treated with lower levels of supplementation (0 and 0.05%).  HA supplementation specifically facilitated the increase abundance of Lactobacillus kullabergensis and the emergence of L. senioris. Multiple linear regression models inferred that L. kullabergensis, L. apis, L. saniviri, L. senioris, peroxidase, phytoene desaturase, and lycopene β-cyclase positively regulated β-carotene.  Conversely, Lactobacillus rennini and L. brevis adjusted β-carotene, negatively.  Positive regulations of the above bacterial species and enzymes had a stronger role in increasing β-carotene than L. rennini and L. brevis. In conclusion, the β-carotene increase of ensiled alfalfa may be regulated by HA supplementation via multiple positive factors, including 4 special Lactobacillus species (L. kullabergensis, L. apis, L. saniviri, and L. senioris), and 3 vegetative β-carotene-related enzymes (peroxidase, phytoene desaturase, and lycopene β-cyclase). 

Keywords:  Hexanoic acid       alfalfa silage       β-carotene       Lactobacillus species  
Received: 14 December 2023   Accepted: 04 March 2024 Online: 28 May 2024  
Fund: This work was supported by the National Natural Science Foundation of China (31971765), the Fundamental Research Funds for the Central Universities, China (KYYZ2023002), the Anhui Province International Joint Research Center of Forage Bio-breeding, China (AHIJRCFB202305), the Key Research and Development Projects of Hainan Province, China (ZDYF2022XDNY153), and the Fundamental Research Funds for the Central Universities, China (XUEKEN2022020).   

About author:  #Correspondence Qinhua Liu, E-mail: liuqinhua@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Cheng Zong, Yuhong Zhao, Wanqi Jiang, Tao Shao, Xinyu Liang, Aili Wu, Qinhua Liu. 2026. Hexanoic acid addition helps to clarify the possible mechanisms of the increased β-carotene content during alfalfa fermentation. Journal of Integrative Agriculture, 25(3): 1165-1179.

Bai J, Ding Z, Ke W, Xu D, Wang M, Huang W, Zhang Y, Liu F, Guo X. 2021. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microbial Biotechnology14, 1171–1182.

Bartkiene E, Vidmantiene D, Gražina J, Viskelis P, Urbonaviciene D. 2013. Lactic acid fermentation of tomato: Effects on cis/trans lycopene isomer ratio, beta-carotene mass fraction and formation of L(+)- and D(–)-lactic acid. Food Technology Biotechnology51, 471–478.

Bogacz-Radomska L, Harasym J. 2018. β-Carotene-properties and production methods. Food Quality and Safety2, 69–74.

Broderick G A, Kang J H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science63, 64–75.

Buxton D R, Muck R E, Harrison J H, Pahlow G, Muck R E, Driehuis F, Elferink S J W H O, Spoelstra S F. 2003. Microbiology of Ensiling. American Society of Agronomy, Madison, WI, USA.

Caccalano M N, Dilarri G, Zamuner C F C, Domingues D S, Ferreira H. 2021. Hexanoic acid a new potential substitute for copper-based agrochemicals against citrus canker. Journal of Applied Microbiology131, 2488–2499.

Cai L, Wang L, Luo Z, Li L, Niu Y, Cai L, Xie H. 2020. Meta-analysis of alfalfa yield and WUE response to growing ages in China. Acta Prataculturae Sinica29, 27–38. (in Chinese)

Van Cuon D. 2017. Enhanced β-carotene biosynthesis in recombinant Escherichia coli harboring the bottom portion of mevalonate pathway of Enterococcus faecium VTCC-B-935 isolated in Vietnam. Journal of Applied Biotechnology and Bioengineering3. 374–379.

Du Z, Lin Y, Sun L, Yang F, Cai Y. 2021. Microbial community structure, cooccurrence network and fermentation characteristics of woody plant silage. Journal of the Science of Food and Agriculture102, 1193–1204.

Dunne P G, Monahan F J, O’Mara F P, Moloney A P. 2009. Colour of bovine subcutaneous adipose tissue A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history. Meat Science81, 28–45.

Eun J S, Beauchemin K A. 2007. Enhancing in vitro degradation of alfalfa hay and corn silage using feed enzymes. Journal of Dairy Science90, 2839–2851.

Garrido-Fernández J, Maldonado-Barragán A, Caballero-Guerrero B, Hornero-Méndez D, Ruiz-Barba J L. 2010. Carotenoid production in Lactobacillus plantarumInternational Journal of Food Microbiology140, 34–39.

Goliński P, Warda M, Stypiński P. 2012. Grassland-a European resource? In: Proceedings of the 24th General Meeting of the European Grassland Federation. Oficyna Wydawnicza Garmond, Lublin, Poland.

Gul K, Tak A, Singh A K, Singh P, Yousuf B, Wani A A. 2015. Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food & Agriculture1, 1018696.

Hadidi M, Orellana Palacios J C, McClements D J, Mahfouzi M, Moreno A. 2023. Alfalfa as a sustainable source of plant-based food proteins. Trends in Food Science & Technology135, 202–214.

Johansson B, Persson Waller K, Jensen S K, Lindqvist H, Nadeau E. 2014. Status of vitamins E and A and β-carotene and health in organic dairy cows fed a diet without synthetic vitamins. Journal of Dairy Science97, 1682–1692.

Kalač P. 2012. Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review. Journal of Agrobiology29, 1–13.

Kung Jr L, Shaver R D, Grant R J, Schmidt R J. 2018. Silage review Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science101, 4020–4033.

Liang M H, Zhu J, Jiang J G. 2018. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Critical Reviews in Food Science and Nutrition58, 2314–2333.

Liu Q H, Shao T, Bai Y F. 2016. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Animal Feed Science and Technology221, 1–11.

Lv R, El-Sabagh M, Obitsu T, Sugino T, Kurokawa Y, Kawamura K. 2017. Effects of nitrogen fertilizer and harvesting stage on photosynthetic pigments and phytol contents of Italian ryegrass silage. Animal Science Journal88, 1513–1522.

Mapelli-Brahm P, Barba F J, Remize F, Garcia C, Fessard A, Mousavi Khaneghah A, Sant’Ana A S, Lorenzo J M, Montesano D, Meléndez-Martínez A J. 2020. The impact of fermentation processes on the production, retention and bioavailability of carotenoids an overview. Trends in Food Science & Technology99, 389–401.

Mata-Gómez L C, Montañez J C, Méndez-Zavala A, Aguilar C N. 2014. Biotechnological production of carotenoids by yeasts An overview. Microbial Cell Factories13, 12.

Mogensen L, Kristensen T, Søegaard K, Jensen S K, Sehested J. 2012. Alfa-tocopherol and beta-carotene in roughages and milk in organic dairy herds. Livestock Science1451, 44–54.

Myrtsi E D, Evergetis E, Koulocheri S D, Haroutounian S A. 2023. Bioactivity of wild and cultivated legumes phytochemical content and antioxidant properties. Antioxidants12, 852.

Ohyama Y, Hara S I, Masaki S. 1977. The use of caproic acid to prevent aerobic deterioration of silages after opening, with special reference to the amounts and time of application. Journal of Science of Food and Agriculture28, 369–374.

Oki K, Kudo Y, Watanabe K. 2012. Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology62, 601–607.

Oliveira R C, Guerreiro B M, Morais Junior N N, Araujo R L, Pereira R A N, Pereira M N. 2015. Supplementation of prepartum dairy cows with β-carotene. Journal of Dairy Science98, 6304–6314.

Oloo B O, Shitandi A A, Mahungu S, Malinga J B, Ogata R B. 2014. Effects of lactic acid fermentation on the retention of beta-carotene content in orange fleshed sweet potatoes. International Journal of Food Studies3, 13–33.

Playne M J, McDonald P. 1966. The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture17, 264–268.

Poling S M, Hsu W J, Koehrn F J, Yokoyama H. 1977. Chemical induction of β-carotene biosynthesis. Phytochemistry16, 551–555.

Salmerón R, Rodríguez Sánchez A, Garcia C, Pérez J. 2020. The VIF and MSE in Raise Regression. Mathematics8, 605.

Sangija F, Martin H, Matemu A. 2022. Effect of lactic acid fermentation on the nutritional quality and consumer acceptability of African nightshade. Food Science & Nutrition10, 1–15.

Thomas T A. 1977. An automated procedure for the determination of soluble carbohydrates in herbage. Journal of the Science of Food and Agriculture28, 639–642.

Van Soest P J, Robertson J B, Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74, 3583–3597.

Sowbhagya H B, Chitra V N. 2010. Enzyme-assisted extraction of flavorings and colorants from plant materials. Critical Reviews in Food Science and Nutrition50, 146–161.

Tan G, Hu M, Li X, Pan Z, Li M, Li L, Yang M. 2020. High-throughput sequencing and metabolomics reveal differences in bacterial diversity and metabolites between red and white sufu. Frontiers in Microbiology11, 758.

Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot J P, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry an efficient way to identify carotenoid producing lactic acid bacteria. Systematic and Applied Microbiology39, 115–121.

Wang L, Liu Z, Jiang H, Mao X, 2021. Biotechnology advances in β-carotene production by microorganisms. Trends in Food Science & Technology111, 322–332.

Wang W, Yang X, Li J, Dong Z, Zhao J, Shao T, Yuan X. 2021. Effects of hexanoic acid on microbial communities, fermentation, and hygienic quality of corn silages infested with toxigenic fungi. Journal of the Science of Food and Agriculture102, 3522–3534.

Wang Y, Xing J, Chen H. 2017. Progress in metabolic engineering of β-carotene synthesis. Chinese Journal of Biotechnology33, 578–590. (in Chinese)

Wen A, Yuan X, Wang J, Desta S T, Shao T. 2017. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Animal Feed Science and Technology223, 141–148.

Wu J X, Zong C, Shao T, Liang Y S, McCann J C, Dong Z H, Li J F, Zhang J, Liu Q H. 2021. Clarifying the relationships among bacteria, lipid-related enzymes, main polyunsaturated fatty acids and fat-soluble vitamins in alfalfa (Medicago sativa L.) silage using various sugar supplementations. Animal Feed Science and Technology272, 114799.

Xu Y, Hlaing M M, Glagovskaia O, Augustin M A, Terefe N S. 2020. Fermentation by probiotic Lactobacillus gasseri strains enhances the carotenoid and fibre contents of carrot juice. Foods9, 1803.

Zhang H, Chang M, Wang J, Ye S. 2008. Evaluation of peach quality indices using an electronic nose by MLR, QPST and BP network. Sensors and Actuators (B: Chemical), 134, 332–338.

Zhang Y X, Ke W C, Bai J, Li F H, Xu D M, Ding Z T, Guo X S. 2020. The effect of Pediococcus acidilactici J17 with high-antioxidant activity on antioxidant, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage ensiled at two different dry matter contents. Animal Feed Science and Technology268, 114614.

Zong C, Wu Q, Wu A, Chen S, Dong D, Zhao J, Shao T, Liu Q. 2021. Exploring the diversity mechanism of fatty acids and the loss mechanisms of polyunsaturated fatty acids and fat-soluble vitamins in alfalfa silage using different additives. Animal Feed Science and Technology280, 115044.

Zong C, Xiao Y, Shao T, Amber Chiou J, Wu A, Huang Z, Chen C, Jiang W Q, Zhu J G, Dong Z H, Liu Q H, Li M. 2023. Alfalfa as a vegetable source of β-carotene the change mechanism of β-carotene during fermentation. Food Research International172, 113104.

[1] LI Dong-xia, NI Kui-kui, ZHANG Ying-chao, LIN Yan-li, YANG Fu-yu. Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2768-2782.
[2] LIU Ce, LAI Yu-jiao, LU Xiao-nan, GUO Ping-ting, LUO Hai-ling. Effect of lactic acid bacteria inoculants on alfalfa (Medicago sativa L.) silage quality: assessment of degradation (in situ) and gas production (in vitro)[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2834-2841.
No Suggested Reading articles found!