Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1065-1079    DOI: 10.1016/j.jia.2023.12.027
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Combined physiological and pathway analysis revealed the effect of Sporisorium destruens on photosynthesis in broomcorn millet (Panicum miliaceum L.) 

Fei Jin1, 2, Lei Xu1, 3, Zhihu Lü1, 2, Yuchuan Zhang1, 3, Qinghua Yang1, 3, Qingfang Han1, 2#, Baili Feng1, 3#

1 College of Agronomy, Northwest A&F University, Yangling 712100, China

2 Key Laboratory of Crop Physiology, Ecology and Tillage Science in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China

3 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China

 Highlights 
Photosynthetic capacity is reduced after Sporisorium destruens infection broomcorn millet.
Leaves ultrastructure shows that the chloroplast and starch granule morphology were abnormal under the stress of Sporisorium destruens.
RNA-seq of the diseased plants showed that there were differences in the response of photosynthesis to Sporisorium destruens infection in different parts of leaves.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
光合作用是作物生长的基础,对逆境胁迫敏感。黑穗病(Sporisorium destruens)是糜子生产的主要病害。本研究评估了S. destruens侵染对抗病糜子和感病糜子光合作用的影响。接种后,两个品种叶片的叶绿素含量,气体交换参数和叶绿素荧光参数均下降;发病植株叶片超微结构显示叶绿体、线粒体结构异常,并产生许多液泡。抽穗期对各处理的旗叶进行RNA-Seq测序,除抗病和感病糜子外,将发病植株顶部由花序发育而来的病叶作为S2。分析结果表明接种后与光合作用有关的通路诱导了大量的差异表达基因(DEGs),其中感病糜子NF诱导的DEGs数量比抗病糜子BM多,S2诱导的DEGs数量多于感病糜子NF。在这些DEGs中,感病品种诱导的下调DEGs数量大于上调数量, S2诱导的DEGs中上调数量大于下调数量。这些结果表明S. destruens侵染影响了糜子的正常的光合特性。了解S. destruens、光合作用和糜子之间的互作机制是预防黑穗病的发生及增强其抗性的有效措施。


Abstract  

Photosynthesis is the basis of crop growth and is sensitive to stress.  Smut (Sporisorium destruens) is the primary disease in the production of broomcorn millet (Panicum miliaceum L.).  This study evaluated the effects of infection with Sdestruens on the photosynthesis of the resistant cultivar (BM) and susceptible cultivar (NF).  After inoculation, there was a decrease in the chlorophyll content, gas exchange parameters, and chlorophyll fluorescence of the two cultivars.  Observation of the ultrastructure of diseased leaves showed that the chloroplasts and mitochondria had abnormal morphology, and some vacuoles appeared.  RNA-seq was performed on the flag leaves after inoculation.  In addition to the resistant and susceptible cultivars, the diseased leaves developed from inflorescences were defined as S2.  The analysis showed that the pathways related to photosynthesis stimulated some differentially expressed genes (DEGs) after infection with Sdestruens.  More DEGs were induced in the susceptible broomcorn millet NF than in the resistant broomcorn millet BM, and most of those genes were downregulated.  The number of DEGs induced by S2 was greater than that in susceptible cultivar NF, and most of them were upregulated.  These results indicate that infection with Sdestruens affects the normal photosynthetic performance of broomcorn millet.  Understanding the mechanism between Sdestruens, photosynthesis, and broomcorn millet is an effective measure to prevent the occurrence of smut and enhance its resistance. 


Keywords:  broomcorn millet       smut        Sporisorium destruens        photosynthesis  
Received: 31 July 2023   Accepted: 10 November 2023
Fund: 
This work was supported by the China Agriculture Research System of MOF and MARA (CARS-06-A26) and the “Two-chain” Fusion Crop Breeding Key Project of Shaanxi, China (2021-LLRH-07).
About author:  #Correspondence Baili Feng, E-mail: fengbaili@nwsuaf.edu.cn; Qingfang Han, E-mail: hanqf88@nwsuaf.edu.cn

Cite this article: 

Fei Jin, Lei Xu, Zhihu Lü, Yuchuan Zhang, Qinghua Yang, Qingfang Han, Baili Feng. 2025. Combined physiological and pathway analysis revealed the effect of Sporisorium destruens on photosynthesis in broomcorn millet (Panicum miliaceum L.) . Journal of Integrative Agriculture, 24(3): 1065-1079.

Berger S, Sinha A K, Roitsch T. 2007. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany58, 4019–4026.

Dekker J P, Boekema E J. 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics1706, 12–39.

Doehlemann G, Wahl R, Horst R J, Voll L M, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J. 2008a. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydisPlant Journal56, 181–195.

Doehlemann G, Wahl R, Vranes M, de Vries R P, Kämper J, Kahmann R. 2008b. Establishment of compatibility in the Ustilago maydis/maize pathosystem. Journal of Plant Physiology165, 29–40.

Erickson E, Wakao S, Niyogi K K. 2015. Light stress and photoprotection in Chlamydomonas reinhardtiiPlant Journal82, 449–465.

Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. 2020. Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nature Plants6, 55–66.

Gabara B, Kuźniak E, Skłodowska M, Surówka E, Miszalski Z. 2012. Ultrastructural and metabolic modifications at the plant–pathogen interface in Mesembryanthemum crystallinum leaves infected by Botrytis cinereaEnvironmental and Experimental Botany77, 33–43.

Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J. 2011. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiologgy156, 2037–2052.

Goldschmidt-Clermont M, Bassi R. 2015. Sharing light between two photosystems: Mechanism of state transitions. Current Opinion in Plant Biology25, 71–78.

Gong X, Dang K, Liu L, Zhao G, Lv S, Tian L, Jin F, Feng Y, Zhao Y, Feng B. 2021. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China. Agricultural Water Management243, 106434.

De Groote H, Munyua B G. Palmas S, Suresh L M, Bruce A Y, Kimenju S. 2021. Using panel community surveys to track the impact of crop pests over time and space - The case of maize lethal necrosis (MLN) disease in Kenya from 2013 to 2018. Plant Disease105, 1259–1271.

Habiyaremye C, Matanguihan J B, Guedes J D, Ganjyal G M, Whiteman M R, Kidwell K K, Murphy K M. 2017. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, U.S.: A review. Fronters in Plant Science7, 1961.

Heinig U, Gutensohn M, Dudareva N, Aharoni A. 2013. The challenges of cellular compartmentalization in plant metabolic engineering. Current Opinion in Biotechnology24, 239–246.

Horst R J, Doehlemann G, Wahl R, Hofmann J, Schmiedl A, Kahmann R, Kämper J, Sonnewald U, Voll L M. 2010. Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves. Plant Physiology152, 293–308.

Horst R J, Engelsdorf T, Sonnewald U, Voll L M. 2008. Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology165, 19–28.

Jin F, Liu J, Wu E, Yang P, Gao J, Gao X, Feng B. 2021. Leaf transcriptome analysis of broomcorn millet uncovers key genes and pathways in response to Sporisorium destruensInternational Journal of Molecular Sciences22, 9542.

Kahmann R, Kämper J. 2004. Ustilago maydis: How its biology relates to pathogenic development. New Phytologist164, 31–42.

Leister D. 2019. Genetic engineering, synthetic biology and the light reactions of photosynthesis. Plant Physiology179, 778–793.

Liu C, Yuan Y, Liu J, Wang H, Ma Q, Zhou Y, Liu C, Gong X, Feng B. 2022 Comparative transcriptome and physiological analysis unravel proso millet (Panicum miliaceum L.) source leaf adaptation to nitrogen deficiency with high nitrogen use efficiency. Environmental and Experimental Botany199, 104891.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Ludewig F, Sonnewald U. 2016. Demand for food as driver for plant sink development. Journal of Plant Physiology203, 110–115.

Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y, Oshima K, Namba S. 2014. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant Journal78, 541–554.

Makino A, Suzuki Y, Ishiyama K. 2022. Enhancing photosynthesis and yield in rice with improved N use efficiency. Plant Science325, 111475.

Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto Y Y, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K. 2003. Functional analysis of isoforms of NADPH: Protochlorophyllide oxidoreductase (POR) in Arabidopsis thalianaPlant and Cell Physiology44, 963–974.

Matheussen A M, Morgan P W, Frederiksen R A. 1991. Implication of gibberellins in head smut (Sporisorium reilianum) of Sorghum bicolorPlant Physiology96, 537–544.

Müller A H, Sawicki A, Zhou S, Tabrizi S T, Luo M, Hansson M, Willows R D. 2014. Inducing the oxidative stress response in Escherichia coli improves the quality of a recombinant protein: Magnesium chelatase ChlH. Protein Expression and Purification101, 61–67.

Nagata N, Tanaka R, Satoh S, Tanaka A. 2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell17, 233–240.

Negi J, Munemasa S, Song B, Tadakuma R, Fujita M, Azoulay-Shemer T. 2018. Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells. Proceedings of the National Academy of Sciences of the United States of America115, 9038–9043.

Nelson N, Yocum C F. 2006. Structure and function of photosystems I and II. Annual Review of Plant Biology57, 521–565.

Pérez-Bueno M L, Pineda M, Barón M. 2019. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Fronters in Plant Science10, 1135.

Pruzinská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S. 2007. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell19, 369–387.

Qiu J, Meng S, Deng Y, Huang S, Kou Y. 2019. Ustilaginoidea virens: A fungus infects rice flower and threats world rice production. Rice Science26, 199–206.

Rajput S G, Santra D K, Schnable J. 2016. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Molecular Breeding36, 1–18.

Raza M M, Bebber D P. 2022. Climate change and plant pathogens. Current Opinion in Microbiology70, 102233.

Ruan X, Ma L, Zhang Y, Wang Q, Gao X. 2021. Dissection of the complex transcription and metabolism regulation networks associated with maize resistance to Ustilago maydisGenes12, 1789.

Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. 2013. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant Journal74, 122–133.

Santiago R, Alarcón B, de Armas R, Vicente C, Legaz M E. 2012. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Physiologia Plantarum145, 245–259.

Sawicki A, Zhou S, Kwiatkowski K, Luo M, Willows R D. 2017. 1-N-histidine phosphorylation of ChlD by the AAA+ ChLI2 stimulates magnesium chelatase activity in chlorophyll synthesis. Biochemical Journal474, 2095–2105.

Schierhorn F, Hofmann M, Gagalyuk T, Ostapchuk I, Müller D. 2021. Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Climatic Change169, 1–19.

Sonnewald U, Fernie A R. 2018 Next-generation strategies for understanding and influencing source–sink relations in crop plants. Current Opinion in Plant Biology43, 63–70.

Tanaka R, Tanaka A. 2007. Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology58, 321–346.

Tiku V, Tan M W, Dikic I. 2020. Mitochondrial functions in infection and immunity. Trends in Cell Biollgy30, 263–275.

Townsend A J, Ware M A, Ruban A V. 2018. Dynamic interplay between photodamage and photoprotection in photosystem II. PlantCell & Environment1, 1098–1112.

Turgeon R. 1989. The sink–source transition in leaves. Annual Review of Plant Physiology and Plant Molecular Biology40, 119–138.

Villajuana-Bonequi M, Matei A, Ernst C, Hallab A, Usadel B, Doehlemann G. 2019. Cell type specific transcriptional reprogramming of maize leaves during Ustilago maydis induced tumor formation. Scientific Reports9, 1–15.

Wang P, Grimm B. 2021. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends in Plant Science26, 484–495.

Wobbe L, Bassi R, Kruse O. 2016. Multi-level light capture control in plants and green algae. Trends in Plant Science21, 55–68.

Woodson J D. 2022. Control of chloroplast degradation and cell death in response to stress. Trends in Biochemical Sciences47, 851–864.

Xiao L, Wang S. 2005. Plant Physiology Experiment Technology. China Agrculture Press, Beijing. pp. 25–28. (in Chinese)

Yuan Y, Liu L, Gao Y, Yang Q, Dong K. Liu T. Feng B. 2022. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Industrial Crops and Products177, 114498.

Yuan Y H, Li J, Ma H C, Yang Q H, Liu C J, Feng B L. 2021. Salt-tolerant broomcorn millet (Panicum miliaceum L.) resists salt stress via modulation of cell wall biosynthesis and Na+ balance. Land Degradation & Development32, 518–532.

Zeeman S C, Smith S M, Smith A M. 2007. The diurnal metabolism of leaf starch. Biochemical Journal401, 13–28.

Zhang J, He C, Chen L, Gao S. 2018. Improving food security in China by taking advantage of marginal and degraded lands. Journal of Clean Production171, 1020–1030.

Zhang Q Q, Zhong T, E L Z, Xu M L, Dai W X, Sun S C, Ye J R. 2021. GT factor ZmGT-3b is associated with regulation of photosynthesis and defense response to Fusarium graminearum infection in maize seedling. Frontiers in Plant Science12, 724133.

Zhou Y, Qu Y, Zhu M, Liu J, Wang Y, Song H, Feng B. 2016. Genetic diversity and virulence variation of Sporisorium destruens isolates and evaluation of broomcorn millet for resistance to head smut. Euphytica211, 59–70.

Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, Deng P, Peng L, Jia W, Huang R, Zhang M, Sun Y, Hu J, Fu X, Schnable P S, Chang Y, Li F, Zhang H, Feng B, et al. 2019. The genome of broomcorn millet. Nature Communication10, 436.

Zou K, Li Y, Zhang W, Jia Y, Wang Y, Ma Y, Lv X, Xuan Y, Du W. 2022. Early infection response of fungal biotroph Ustilago maydis in maize. Frontiers in Plant Science13, 970897.

Zuo W, Ökmen B, Depotter J R L, Ebert M K, Redkar A, Misas Villamil J, Doehlemann G. 2019. Molecular interactions between smut fungi and their host plants. Annual Review of Phytopathology57, 411–430.

[1] Jiamao Gu, Pengkun Liu, Wenting Nie, Zhijun Wang, Xiaoyu Cui, Hongdan Fu, Feng Wang, Mingfang Qi, Zhouping Sun, Tianlai Li, Yufeng Liu. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(2): 546-563.
[2] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[3] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
No Suggested Reading articles found!