Berger S, Sinha A K, Roitsch T. 2007. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.
Dekker J P, Boekema E J. 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706, 12–39.
Doehlemann G, Wahl R, Horst R J, Voll L M, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J. 2008a. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant Journal, 56, 181–195.
Doehlemann G, Wahl R, Vranes M, de Vries R P, Kämper J, Kahmann R. 2008b. Establishment of compatibility in the Ustilago maydis/maize pathosystem. Journal of Plant Physiology, 165, 29–40.
Erickson E, Wakao S, Niyogi K K. 2015. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant Journal, 82, 449–465.
Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. 2020. Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. Nature Plants, 6, 55–66.
Gabara B, Kuźniak E, Skłodowska M, Surówka E, Miszalski Z. 2012. Ultrastructural and metabolic modifications at the plant–pathogen interface in Mesembryanthemum crystallinum leaves infected by Botrytis cinerea. Environmental and Experimental Botany, 77, 33–43.
Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J. 2011. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiologgy, 156, 2037–2052.
Goldschmidt-Clermont M, Bassi R. 2015. Sharing light between two photosystems: Mechanism of state transitions. Current Opinion in Plant Biology, 25, 71–78.
Gong X, Dang K, Liu L, Zhao G, Lv S, Tian L, Jin F, Feng Y, Zhao Y, Feng B. 2021. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China. Agricultural Water Management, 243, 106434.
De Groote H, Munyua B G. Palmas S, Suresh L M, Bruce A Y, Kimenju S. 2021. Using panel community surveys to track the impact of crop pests over time and space - The case of maize lethal necrosis (MLN) disease in Kenya from 2013 to 2018. Plant Disease, 105, 1259–1271.
Habiyaremye C, Matanguihan J B, Guedes J D, Ganjyal G M, Whiteman M R, Kidwell K K, Murphy K M. 2017. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, U.S.: A review. Fronters in Plant Science, 7, 1961.
Heinig U, Gutensohn M, Dudareva N, Aharoni A. 2013. The challenges of cellular compartmentalization in plant metabolic engineering. Current Opinion in Biotechnology, 24, 239–246.
Horst R J, Doehlemann G, Wahl R, Hofmann J, Schmiedl A, Kahmann R, Kämper J, Sonnewald U, Voll L M. 2010. Ustilago maydis infection strongly alters organic nitrogen allocation in maize and stimulates productivity of systemic source leaves. Plant Physiology, 152, 293–308.
Horst R J, Engelsdorf T, Sonnewald U, Voll L M. 2008. Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis. Journal of Plant Physiology, 165, 19–28.
Jin F, Liu J, Wu E, Yang P, Gao J, Gao X, Feng B. 2021. Leaf transcriptome analysis of broomcorn millet uncovers key genes and pathways in response to Sporisorium destruens. International Journal of Molecular Sciences, 22, 9542.
Kahmann R, Kämper J. 2004. Ustilago maydis: How its biology relates to pathogenic development. New Phytologist, 164, 31–42.
Leister D. 2019. Genetic engineering, synthetic biology and the light reactions of photosynthesis. Plant Physiology, 179, 778–793.
Liu C, Yuan Y, Liu J, Wang H, Ma Q, Zhou Y, Liu C, Gong X, Feng B. 2022 Comparative transcriptome and physiological analysis unravel proso millet (Panicum miliaceum L.) source leaf adaptation to nitrogen deficiency with high nitrogen use efficiency. Environmental and Experimental Botany, 199, 104891.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Ludewig F, Sonnewald U. 2016. Demand for food as driver for plant sink development. Journal of Plant Physiology, 203, 110–115.
Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y, Oshima K, Namba S. 2014. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant Journal, 78, 541–554.
Makino A, Suzuki Y, Ishiyama K. 2022. Enhancing photosynthesis and yield in rice with improved N use efficiency. Plant Science, 325, 111475.
Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto Y Y, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K. 2003. Functional analysis of isoforms of NADPH: Protochlorophyllide oxidoreductase (POR) in Arabidopsis thaliana. Plant and Cell Physiology, 44, 963–974.
Matheussen A M, Morgan P W, Frederiksen R A. 1991. Implication of gibberellins in head smut (Sporisorium reilianum) of Sorghum bicolor. Plant Physiology, 96, 537–544.
Müller A H, Sawicki A, Zhou S, Tabrizi S T, Luo M, Hansson M, Willows R D. 2014. Inducing the oxidative stress response in Escherichia coli improves the quality of a recombinant protein: Magnesium chelatase ChlH. Protein Expression and Purification, 101, 61–67.
Nagata N, Tanaka R, Satoh S, Tanaka A. 2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 17, 233–240.
Negi J, Munemasa S, Song B, Tadakuma R, Fujita M, Azoulay-Shemer T. 2018. Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells. Proceedings of the National Academy of Sciences of the United States of America, 115, 9038–9043.
Nelson N, Yocum C F. 2006. Structure and function of photosystems I and II. Annual Review of Plant Biology, 57, 521–565.
Pérez-Bueno M L, Pineda M, Barón M. 2019. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Fronters in Plant Science, 10, 1135.
Pruzinská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S. 2007. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell, 19, 369–387.
Qiu J, Meng S, Deng Y, Huang S, Kou Y. 2019. Ustilaginoidea virens: A fungus infects rice flower and threats world rice production. Rice Science, 26, 199–206.
Rajput S G, Santra D K, Schnable J. 2016. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Molecular Breeding, 36, 1–18.
Raza M M, Bebber D P. 2022. Climate change and plant pathogens. Current Opinion in Microbiology, 70, 102233.
Ruan X, Ma L, Zhang Y, Wang Q, Gao X. 2021. Dissection of the complex transcription and metabolism regulation networks associated with maize resistance to Ustilago maydis. Genes, 12, 1789.
Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. 2013. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant Journal, 74, 122–133.
Santiago R, Alarcón B, de Armas R, Vicente C, Legaz M E. 2012. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Physiologia Plantarum, 145, 245–259.
Sawicki A, Zhou S, Kwiatkowski K, Luo M, Willows R D. 2017. 1-N-histidine phosphorylation of ChlD by the AAA+ ChLI2 stimulates magnesium chelatase activity in chlorophyll synthesis. Biochemical Journal, 474, 2095–2105.
Schierhorn F, Hofmann M, Gagalyuk T, Ostapchuk I, Müller D. 2021. Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Climatic Change, 169, 1–19.
Sonnewald U, Fernie A R. 2018 Next-generation strategies for understanding and influencing source–sink relations in crop plants. Current Opinion in Plant Biology, 43, 63–70.
Tanaka R, Tanaka A. 2007. Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology, 58, 321–346.
Tiku V, Tan M W, Dikic I. 2020. Mitochondrial functions in infection and immunity. Trends in Cell Biollgy, 30, 263–275.
Townsend A J, Ware M A, Ruban A V. 2018. Dynamic interplay between photodamage and photoprotection in photosystem II. Plant, Cell & Environment, 1, 1098–1112.
Turgeon R. 1989. The sink–source transition in leaves. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 119–138.
Villajuana-Bonequi M, Matei A, Ernst C, Hallab A, Usadel B, Doehlemann G. 2019. Cell type specific transcriptional reprogramming of maize leaves during Ustilago maydis induced tumor formation. Scientific Reports, 9, 1–15.
Wang P, Grimm B. 2021. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends in Plant Science, 26, 484–495.
Wobbe L, Bassi R, Kruse O. 2016. Multi-level light capture control in plants and green algae. Trends in Plant Science, 21, 55–68.
Woodson J D. 2022. Control of chloroplast degradation and cell death in response to stress. Trends in Biochemical Sciences, 47, 851–864.
Xiao L, Wang S. 2005. Plant Physiology Experiment Technology. China Agrculture Press, Beijing. pp. 25–28. (in Chinese)
Yuan Y, Liu L, Gao Y, Yang Q, Dong K. Liu T. Feng B. 2022. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Industrial Crops and Products, 177, 114498.
Yuan Y H, Li J, Ma H C, Yang Q H, Liu C J, Feng B L. 2021. Salt-tolerant broomcorn millet (Panicum miliaceum L.) resists salt stress via modulation of cell wall biosynthesis and Na+ balance. Land Degradation & Development, 32, 518–532.
Zeeman S C, Smith S M, Smith A M. 2007. The diurnal metabolism of leaf starch. Biochemical Journal, 401, 13–28.
Zhang J, He C, Chen L, Gao S. 2018. Improving food security in China by taking advantage of marginal and degraded lands. Journal of Clean Production, 171, 1020–1030.
Zhang Q Q, Zhong T, E L Z, Xu M L, Dai W X, Sun S C, Ye J R. 2021. GT factor ZmGT-3b is associated with regulation of photosynthesis and defense response to Fusarium graminearum infection in maize seedling. Frontiers in Plant Science, 12, 724133.
Zhou Y, Qu Y, Zhu M, Liu J, Wang Y, Song H, Feng B. 2016. Genetic diversity and virulence variation of Sporisorium destruens isolates and evaluation of broomcorn millet for resistance to head smut. Euphytica, 211, 59–70.
Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, Deng P, Peng L, Jia W, Huang R, Zhang M, Sun Y, Hu J, Fu X, Schnable P S, Chang Y, Li F, Zhang H, Feng B, et al. 2019. The genome of broomcorn millet. Nature Communication, 10, 436.
Zou K, Li Y, Zhang W, Jia Y, Wang Y, Ma Y, Lv X, Xuan Y, Du W. 2022. Early infection response of fungal biotroph Ustilago maydis in maize. Frontiers in Plant Science, 13, 970897.
Zuo W, Ökmen B, Depotter J R L, Ebert M K, Redkar A, Misas Villamil J, Doehlemann G. 2019. Molecular interactions between smut fungi and their host plants. Annual Review of Phytopathology, 57, 411–430.
|