Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (7): 1613-1623    DOI: 10.1016/S2095-3119(18)62094-5
Special Issue: 害虫抗药性和毒理学合辑Pest Toxicology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, Sitobion avenae (F.) and Rhopalosiphum padi (L.)
XIN Juan-juan1, 2, YU Wen-xin1, YI Xiao-qing1, GAO Jun-ping1, GAO Xi-wu1, ZENG Xiao-peng
1 Department of Entomology, China Agricultural University, Beijing 100193, P.R.China
2 Haidian District Center for Disease Prevention and Control, Beijing 100094, P.R.China
3 Beijing Center for Disease Prevention and Control, Beijing 100013, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Sitobion avenae (F.) and Rhopalosiphum padi (L.) are two important pests of wheat in China.  They typically coexist in fields during the late period of wheat growth.  Sulfoxaflor is a novel sulfoximine insecticide that demonstrates broad-spectrum efficacy, especially in targeting sap-feeding insects.  This study was carried out to investigate the sublethal effects of sulfoxaflor on the development, longevity, and reproduction of two species of wheat aphids.  Our results showed that sublethal concentrations of sulfoxaflor did not cause significant effects on the fecundity or the longevity of the parent generation (F0 generation) of either S. avenae or R. padi.  However, it caused transgenerational sublethal effects.  For S. avenae, adult longevity of F1 generation was significantly decreased.  No significant differences were observed on the population parameters of S. avenae in the F1 generation.  For R. padi, the adult preoviposition period (APOP) and the total preoviposition period (TPOP) of F1 generation were significantly reduced.  The mean generation time (T) was significantly reduced in the R. padi F1 generation.  What’s more, the intrinsic rate of increase (rm) and the finite rate of increase (λ) were significantly increased in the R. padi F1 generation.  Taken together, these results suggest that exposure to the LC25 of sulfoxafl had no effects on the parent generation of S. avenae or R. padi, but it reduced adult longevity of S. avenae as a negative effect and increased the rm and λ of R. padi in the first progeny generation, which may have an impact on the population dynamics of R. padi.
 
Keywords:  Sitobion avenae        Rhopalosiphum padi        sulfoxaflor        sublethal effect  
Received: 04 April 2018   Online: 14 August 2018   Accepted:
Fund: This work was supported by the National Barley Industry Technology System of China (CARS-05).

 

Corresponding Authors:  Correspondence GAO Xi-wu, Tel: +86-10-62732974, E-mail: gaoxiwu@263.net.cn; ZENG Xiao-peng, Tel: +86-10-64407027, E-mail: xpzeng@126.com   
About author:  XIN Juan-juan, Tel: +86-10-82405651, E-mail: xinjj1104@126.com;

Cite this article: 

XIN Juan-juan, YU Wen-xin, YI Xiao-qing, GAO Jun-ping, GAO Xi-wu, ZENG Xiao-peng. 2019. Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, Sitobion avenae (F.) and Rhopalosiphum padi (L.). Journal of Integrative Agriculture, 18(7): 1613-1623.

Babcock J M, Gerwick C B, Huang J X, Loso M R, Thomas G, Watson G B, Zhu Y. 2011. Biological characterization of sulfoxaflor, a novel insecticide. Pest Management Science, 67, 328–334.
Biondi A, Desneux N, Siscaro G, Zappala L. 2012. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere, 87, 803–812.
Chen M H, Han Z J, Qiao X F, Qu M J. 2007. Resistance mechanisms and associated mutations in acetylcholin­esterase genes in Sitobion avenae (Fabricius). Pesticide Biochemistry and Physiology, 87, 189–195.
Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.
Chi H. 2017. TWOSEX-MSChart: Computer program for age stage, two-sexlife table analysis. [2017-11-12]. http://140.120.197.173/ecology/Download/TWOSEXMS Chart.rar
Chi H, Su H Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35, 10–21.
Cui L, Sun L, Yang D B, Yan X J, Yuan H Z. 2012. Effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the feeding behavior of Sitobion avenae. Pest Management Science, 68, 1484–1491.
Cui L, Sun L N, Shao X S, Cao Y Z, Yang D B, Li Z, Yuan H Z. 2010. Systemic action of novel neonicotinoid insecticide IPP-10 and its effect on the feeding behaviour of
Rhopalosiphum padi on wheat. Pest Management Science, 66, 779–785.
Daniels M, Bale J S, Newbury H J, Lind R J, Pritchard J. 2009. A sublethal dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat aphid
(Rhopalosiphum padi), which is associated with dehydration and reduced performance. Journal of Insect Physiology, 55, 758–765.
Desneux N, Decourtye A, Delpuech J M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.
Desneux N, Fauvergue X, Dechaume-Moncharmont F X, Kerhoas L, Ballanger Y, Kaiser L. 2005. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. Journal of Economic Entomology, 98, 9–17.
Efron B, Tibshirani R J. 1993. An Introduction to the Bootstrap. Chapman and Hall, New York.
Ebrahimi M, Sahragard A, Talaei-Hassanloui R, Kavousi A, Chi H. 2013. The life table and parasitism rate of Diadegma
insulare (Hymenoptera: Icheumonidae) reared on larvae of Plautella xylostella (Lepidoptera: Plutellidae), with special reference to the variable sex ratio of the offspring and comparison of jackknife and bootstrap techniques.  Entomological Society of America, 106, 279–287.
Gerami S, Jahromi K T, Ashouri A, Rasoulian G, Heidari A. 2005. Sublethal effects of imidacloprid and pymetrozine on the life table parameters of Aphis gossypii Glover
(Homoptera: Aphididae). Communications in Agricultural and Applied Biological Science, 70, 779–785.
Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. American Naturalist, 119, 803–823.
Gore J, Cook D, Catchot A, Leonard B R, Stewart S D, Lorenz G, Kerns D. 2013. Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the Southern United States. Journal of Economic Entomology, 106, 1430–1439.
Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao X W. 2013.Sublethal and transgenerational effects of chlorantraniliprole on bilological traits of the diamondback moth, Plutella xylostella L. Crop Protection, 48, 29–34.
He Y X, Zhao J W, Zheng Y, Weng Q Y, Biondi A, Desneux N, Wu K M. 2013. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. International Journal of Biological Sciences, 9, 246–255.
Khanamani M, Fathipour Y, Hajiqanbar H. 2013. Population growth response of Tetranychus urticae to eggplant quality: Application of female age-specific and age-stage, two-sex life tables. International Journal of Acarology, 39, 638–648.
Lashkari M R, Sahragard A, Ghadamyari M. 2007. Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne
brassicae, on rapeseed, Brassica napus L. Insect Science, 14, 207–212.
Laurent F M, Rathahao E. 2003. Distribution of [14C]-imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. Journal of Agricultural and Food Chemistry, 51, 8005–8010.
Liu Y Q, Lu Y H, Wu K M, Wyckhuys K A G, Xue F S. 2008. Lethal and sublethal effects of endosulfan on Apolygus lucorum (Hemiptera: Miridae). Journal of Economic Entomology, 101, 1805–1810.
Longhurst C, Babcock J M, Denholm I, Gorman K, Thomas J D, Sparks T C. 2013. Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinds and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporaiorum. Pest Management Science, 69, 809–813.
Lu Y H, Gao X W. 2007. A method for mass culture of wheat aphids. Chinese Bulletin of Entomology, 44, 289–290. (in Chinese)
Lu Y H, Gao X W. 2009. Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb.
Bulletin of Entomological Research, 99, 611–617.
Lu Y H, He Y P, Gao X W. 2013. Comparative studies on acetylcholinesterase characteristics between the aphids, Sitobion avenae and Rhopalosiphum padi. Journal of Insect Science, 13, 9.
Lu Y H, Zheng X S, Gao X W. 2016. Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Bulletin of Entomological Research, 106, 551–559.
Ma X M, Liu X X, Zhang Q W, Zhao J Z, Cai Q N, Ma Y A, Chen D M. 2010. Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat-cotton relay intercropping system. Entomologia Experimentalis et Applicata, 121, 235–241.
Men X, Ge F, Yardim E, Parajulee M. 2004. Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids. BioControl, 49, 701–714.
Miao J, Du Z B, Wu Y Q, Gong Z J, Jiang Y L, Duan Y, Li T, Lei C L. 2014. Sublethal effects of four neonicotinoid seed treatments on the demography and feeding behaviour of the wheat aphid Sitobion avenae. Pest Management
Science, 70, 55–59.
Miao J, Wu Y Q, Xu W G, Hu L, Yu Z X, Xu Q F. 2011. The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi. Environment Entomology,
40, 743–748.
Moores G D, Gao X W, Denholm I, Devoshire A L. 1996. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii Glover
(Homoptera: Aphididae). Pesticide Biochemistry and Physiology, 56, 102–110.
Power A G, Gray S. 1995. Aphid transmission of barley yellow dwarf viruses: Interactions between viruses. In: Arcy C J D, Burnett P, eds., Barley Yellow Dwarf: 40 Years of Progress. The American Phytopalogical Society, St. Paul. pp. 259–291.
Rahmani S, BandaniA R. 2013. Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze)
(Coleoptera: Coccinellidae). Crop Protection, 54, 168–175.
Sparks T C, DeBoer G J, Wang N X, Hasler J M, Loso M R, Watson G B. 2012. Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophula melanogaster monooxygenase CYP6G1. Pesticide Biochemistry and Physiology, 103, 159–165.
Sparks T C, Watson G B, Loso M R, Geng C, Babcock J M, Thomas J D. 2013. Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects. Pesticide Biochemistry and Physiology,
107, 1–7.
Tuan S J, Lee C C, Chi H. 2014. Population and damage projection of Spodoptera litura (F.) on peanuts
(Arachishypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science, 70, 805–813.
Vanaclocha P, Vidal-Quist C, Oheix S, Montón H, Planes L, Catalán J, Tena A, Verdu M J, Urbaneja A. 2013. Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus.
Journal of Pest Science, 86, 329–336.
Wang S Y, Qi Y F, Desneux N, Shi X Y, Biondi A, Gao X W. 2016. Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. Journal of Pest Science, 90, 1–8.
Wang Z H, Fan J M, Chen J C, Gong Y J, Wei S J. 2017. Sublethal effects of sulfoxaflor on the growth and reproduction of the green peach aphid Myzus persicae. Scientia Agricultura Sinica, 50, 496–503. (in Chinese)
Xiao D, Yang T, Desneux N, Han P, Gao X W. 2015. Assessment of sublethal and transgenerational effects of pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae. PLoS ONE, 10, e0128936.
Zhang P, Liu F, Mu W, Wang Q, Li H, Chen C. 2014. Life table study of the effects of sublethal concentrations of thiamethoxam on Bradysia odoriphaga Yang and Zhang. Pesticide Biochemistry and Physiology, 111, 31–37.
[1] MA Kang-sheng, TANG Qiu-ling, LIANG Ping-zhuo, LI Jian-hong, GAO Xi-wu. A sublethal concentration of afidopyropen suppresses the population growth of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2055-2064.
[2] DAI Wei, LI Yao, ZHU Jun, GE Lin-quan, YANG Guo-qing, LIU Fang. Selectivity and sublethal effects of some frequently-used biopesticides on the predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae)[J]. >Journal of Integrative Agriculture, 2019, 18(1): 124-133.
No Suggested Reading articles found!