Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2752-2763    DOI: 10.1016/j.jia.2023.12.020
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The synergistic regulatory effect of PTP1B and PTK inhibitors on the development of Oedaleus decorus asiaticus Bei-Bienko

Shuang Li1, 2, 5*, Sibo Liu3, 4*, Chaomin Xu1, 5, Shiqian Feng1, 5, Xiongbing Tu1, 5#, Zehua Zhang1, 5

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
2 Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
3 Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
4 Inner Mongolia University, Hohhot 010019, China
5 Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot 026000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
酪氨酸磷酸化对控制正常细胞生长、存活、胞间交流、基因转录、免疫反应和其他过程至关重要。PTP(蛋白酪氨酸磷酸酶)和PTK(蛋白酪氨酸激酶)可通过调节多种信号通路来实现这一目标。亚洲小车蝗是蒙古高原草原上的一种重要害虫。我们的目的是在分别抑制PTP1B(蛋白酪氨酸磷酸酶-1B)和PTK活性的同时,评估亚洲小车蝗4龄若虫的存活率、生长速率、总体表现力和雌虫卵巢发育形态。此外,还评估了两种处理下亚洲小车蝗MAPK信号通路中关键基因表达、蛋白磷酸化水平以及抗氧化酶活性。结果发现,PTP1B抑制剂处理后的4龄若虫和对照组在存活率、生长率或总体表现方面无显著差异,而PTK抑制剂处理后,以上指标显著低于对照组。用PTK抑制剂处理4龄若虫15天后,雌虫的卵巢大小及发育显著小于对照,而PTP1B抑制剂处理结果与之相反。与对照和PTK抑制剂处理的若虫相比,4龄若虫在PTP1B抑制剂处理下的MAPK信号通路中关键基因的表达和磷酸化水平显著较高。而ROS水平、NADPH氧化酶和其他抗氧化酶的活性显著降低,此结果与PTK抑制剂相反。因此,PTP1B和PTK在MAPK信号传递中的反馈抑制可以调节蝗虫的生理代谢和发育速率。这些发现促进了将PTP1B和PTK抑制剂用于调控昆虫发育速率,以帮助控制田间害虫种群。


Abstract  
Tyrosine phosphorylation is crucial for controlling normal cell growth, survival, intercellular communication, gene transcription, immune responses, and other processes.  protein tyrosine phosphatase (PTP) and protein tyrosine kinases (PTK) can achieve this goal by regulating multiple signaling pathways.  Oedaleus decorus asiaticus is an important pest that infests the Mongolian Plateau grassland.  We aimed to evaluate the survival rate, growth rate, overall performance, and ovarian developmental morphology of the 4th instar nymphs of O. decorus asiaticus while inhibiting the activity of protein tyrosine phosphatase-1B (PTP1B) and PTK.  In addition, the expression and protein phosphorylation levels of key genes in the MAPK signaling pathway and antioxidant enzyme activity were assessed.  The results showed no significant differences in survival rate, growth rate, or overall performance between PTP1B inhibitor treatment and control.  However, after PTK inhibitor treatment, these indexes were significantly lower than those in the control.  The ovarian size of female larvae after 15 days of treatment with PTK inhibitors showed significantly slower development, while female larvae treated with PTP1B exhibited faster ovarian growth than the control group.  In comparison to controls and nymphs treated with PTK inhibitors, the expression and phosphorylation levels of key genes in the MAPK signaling pathway under PTP1B inhibitor treatments were significantly higher in 4th instar nymphs.  However, reactiveoxygen (ROS) species levels and the activities of NADPH oxidase and other antioxidant enzymes were considerably reduced, although they were significantly greater in the PTK inhibitor treatment.  The results suggest that PTP1B and PTK feedback inhibition in the mitogen-activated-protein kinases (MAPK) signal transfer can regulate the physiological metabolism of the insect as well as its developmental rate.  These findings can facilitate future uses of PTP1B and PTK inhibitors in controlling insect development to help control pest populations.

Keywords:  PTP1B       PTK        inhibito        MAPK pathway        Oedaleus decorus asiaticus       development  
Received: 14 July 2023   Accepted: 02 November 2023
Fund: 
This research was funded by the National Key R&D Program of China (2022YFD1400500), the earmarked fund for China Agriculture Research System (CARS-34) and the Central Public-interest Scientific Institution Basal Research Fund of China (S2022XM21).
About author:  Shuang Li, E-mail: sclishuang61@163.com; Sibo Liu, E-mail: lsbss258@126.com; #Correspondence Xiongbing Tu, E-mail: xbtu@ippcaas.cn * These authors contributed equally to this study.

Cite this article: 

Shuang Li, Sibo Liu, Chaomin Xu, Shiqian Feng, Xiongbing Tu, Zehua Zhang. 2024. The synergistic regulatory effect of PTP1B and PTK inhibitors on the development of Oedaleus decorus asiaticus Bei-Bienko. Journal of Integrative Agriculture, 23(8): 2752-2763.

Ai M, Liang K, Lu Y, Qiu S, Fan Z. 2013. Brk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithelial-to-mesenchymal transition. Cancer Biology & Therapy14, 237–245.

Badisco L, Van Wielendaele P, Vanden Broeck J. 2013. Eat to reproduce: A key role for the insulin signaling pathway in adult insects. Frontiers in Physiology4, 202–217.

Bhuvaneshwari V, Paul P K. 2023. Dual specific protein kinases mediate neem fruit extract-induced defense gene expression in Solanum lycopersicum L. South African Journal of Botany155, 16–26.

Bogdanova O V, Kot L, Lavrova K V, Bogdanov V B, Sloan E K, Beregova T V, Ostapchenko L I. 2010. Modulation of protein tyrosine phosphorylation in gastric mucosa during re-epithelization processes. Journal of Biological Chemistry11, 338–347.

Bruder-Nascimento T, Kennard S, Antonova G, Mintz J D, Bence K K, Belin D, Chantemèle E J. 2016. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-A dependent mechanisms. Clinical Science130, 881–893.

Buszard B J, Johnson T K, Meng T C, Burke R, Warr C G, Tiganis T. 2013. The nucleus- and endoplasmic reticulum-targeted forms of protein tyrosine phosphatase 61F regulate Drosophila growth, life span, and fecundity. Molecular and Cellular Biology33, 1345–1356.

Cagnol S, Chambard J C. 2010. ERK and cell death: Mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. The FEBS Journal277, 2–21.

Cease A J, Hao S, Kang L, Elser J J, Harrison J F. 2010. Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticusJournal of Insect Physiology56, 926–936.

Chang B H, Cui B Y, Ullah H, Li S, Hao K, Tu X B, Wang G J, Nong X Q, McNeill M R, Huang X B, Zhang Z H. 2019. Role of PTP/PTK trans activated insulin-like signalling pathway in regulation of grasshopper (Oedaleus asiaticus) development. Environmental Science and Pollution Research26, 8312–8324.

Costello P S, Turner M, Walters A E, Cunningham C N, Bauer P H, Downward J, Tybulewicz V L J. 1996. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor in mast cells. Oncogene13, 2595–2605.

Cronin R J. 2019. The Role of P90 Ribosomal S6 Kinases (Rsks) in Steroid Signalling. University of Essex, Colchester, England.

Cui B, Huang X B, Li S, Hao K, Chang B H. Tu X B, Wang G J, Nong X Q, Zhang Z H. 2019. Quercetin affects the growth and development of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). Journal of Economic Entomology112, 1175–1182.

Elliott M, Chithan K. 2017. The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer. In: The Flavonoids Advances in Research Since 1986. Routledge, CRC Press, New York. pp. 619–652.

Gancz D, Gilboa L. 2013. Insulin and target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in DrosophilaDevelopment140, 4145–4154.

Goswami R, Gershburg S, Satorius A, Gershburg E. 2012. Protein kinase inhibitors that inhibit induction of lytic program and replication of Epstein–Barr virus. Antiviral Research96, 296–304.

Haj F G, Markova B, Klaman L D, Bohmer F D, Neel B G. 2003. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. Journal of Biological Chemistry278, 739–744.

Haj F G, Verveer P J, Squire A, Neel B G, Bastiaens P I. 2002. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science295, 1708–1711.

Han H B, Wang N, Xu L, Gao S J, Liu A, De Q H L. 2018. Grading criteria for the ovarian development of Oedaleus decorus asiaticus and differences between two types of ovarian development. Plant Protection44, 135–138. (in Chinese)

Han J G, Zhang Y J, Wang C J, Bai W M, Wang Y R, Han G D, Li L H. 2008. Rangeland degradation and restoration management in China. The Rangeland Journal30, 233–239.

Hao K, Ullah H, Jarwar A R, Nong X Q, Tu X B, Zhang Z H. 2019. Molecular identification and diapause-related functional characterization of a novel dual-specificity kinase gene, MPKL, in Locusta migratoriaFEBS Letters593, 3064–3074.

Hornberg J J, Binder B, Bruggeman F J, Schoeber B, Heinrich R, Westerhoff H V. 2005. Control of MAPK signalling: From complexity to what really matters. Oncogene24, 5533–5542.

Huang X B, Ma J C, Qin X H, Tu X B, Cao G C, Wang G J, Nong X Q, Zhang Z H. 2017. Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Scientific Reports7, 8655.

Huang X B, McNeill M R, Zhang Z H. 2015. Quantitative analysis of plant consumption and preference by Oedaleus asiaticus (Acrididae: Oedipodinae) in changed plant communities consisting of three grass species. Environmental Entomology45, 163–170.

Huber A B, Kolodkin A L, Ginty D D, Cloutier J F. 2003. Signaling at the growth cone: Ligand-receptor complexes and the control of axon growth and guidance. Annual Review of Neuroscience26, 509–563.

Kampa D, Burnside J. 2000. Computational and functional analysis of the putative SH2 domain in Janus Kinases. Biochemical and Biophysical Research Communications278, 175–182.

Kang L, Chen Y L. 2010. Dynamics of grasshopper communities
under different grazing intensities in Inner Mongolian steppes. Insect Science2, 265–281.

Kurosaki T, Tsukada S. 2000. Blnk connecting Syk and Btk to calcium signals. Immunity12, 1–5.

Lambeth J D, Kawahara T. 2007. Diebold B regulation of Nox and Duox enzymatic activity and expression. Free Radical Biology and Medicine43, 319–331.

Lanahan A A, Lech D, Dubrac A, Zhang J, Zhuang Z W, Eichmann A, Simons M. 2014. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation130, 902.

Levitzki A, Mishani E. 2006. Tyrphostins and other tyrosine kinase inhibitors. Annual Review of Biochemistry75, 93–109.

Li H C, Wang Z, Chen Y L. 1987. Food consumption and utilization by three species of Acridoids in typical steppe. Acta Ecologica Sinica7, 331–338. (in Chinese)

Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y, Lv T, Yao Y, Yuan D, Song Y. 2015. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Letter359, 218–225.

Lorber B, Hendriks W J A J, Van der Zee C E E M, Berry M, Logan A. 2005. Effects of LAR and PTP-BL phosphatase deficiency on adult mouse retinal cells activated by lens injury. European Journal of Neuroscience21, 2375–2383.

Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. 2019a. Endoplasmic reticulum stress: A critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes. International Journal of Molecular Sciences20, 1658.

Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. 2019b. Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: A focus on the protective roles of heme oxygenase (HO)-1. Frontiers in Psychology10, 70.

Nassel D R, Liu Y, Luo J. 2015. Insulin/IGF signaling and its regulation in DrosophilaGeneral and Comparative Endocrinology221, 255–266.

Panzhinskiy E, Hua Y, Culver B, Ren J, Nair S. 2013. Endoplasmic reticulum stress up-regulates protein tyrosine phosphatase 1B and impairs glucose uptake in cultured myotubes. Diabetologia56, 598–607.

Park C H, Hahm E R, Lee J H, Jung K C, Yang C H. 2005. Inhibition of β-catenin-mediated transactivation by flavanone in AGS gastric cancer cells. Biochemical and Biophysical Research Communications331, 1222–1228.

Riddiford L M. 2012. How does juvenile hormone control insect metamorphosis and reproduction? General and Comparative Endocrinology179, 477–484.

Roovers K, Assoian R K. 2000. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. BioEssay22, 818–826.

Sasaki H, Emi M, Iijima H, Ito N, Sato H, Yabe I, Kato T, Utsumi J, Matsubara K. 2011. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: Discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Molecular Brain4, 24.

Taguchi A, White M F. 2008. Insulin-like signaling, nutrient homeostasis, and life span. Annual Review of Physiology70, 191–212.

Tchankouo N S, Udinotti M, Durand M, Meng T C, Taouis M, Rabinow L. 2014. Negative regulation of map kinase signaling in Drosophila by ptp61f/ptp1b. Molecular Genetics and Genomics289, 795–806.

Thiebaut P A, Besnier M, Gomez E, Richard V. 2016. Role of protein tyrosine phosphatase 1B in cardiovascular diseases. Journal of Molecular and Cellular Cardiology101, 50–57.

Tonks N K, Neel B G. 2001. Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology13, 182–195.

Varela-Nieto I, Murillo-Cuesta S, La Rosa R D, Rosa A, Gonzalez-Rodriguez A M. 2012. OR06-6 IRS2-deficient mice show sensorineural hearing loss that is delayed by concomitant PTP1B loss of function. Growth Hormone and IGF Research22, S17.

Velloso L A, Folli F, Perego L, Saad M J A. 2006. The multi-faceted cross-talk between the insulin and angiotensin II signaling systems. Diabetes/Metabolism Research and Reviews22, 98–107.

Wu H H, Xu Y H, Cao G C, Gexigeduren, Liu Z Y, He B, Ererdengba, Wang G J, Zhang Z H. 2012. Ecological effects of typical grassland types in Inner Mongolia on grasshopper community. Scientia Agricultura Sinca45, 4178–4186. (in Chinese)

Xie L, Lee S Y, Andersen J N, Waters S, Shen K, Guo X L, Moller N P, Olefsky J M, Lawrence D S, Zhang Z Y. 2003. Cellular effects of small molecule ptp1b inhibitors on insulin signaling? Biochemistry42, 12792–12804.

Xu F Z, Meng Z P, Guo Y H, Shen J P. 2006. Observation on biological characteristics of Oedaleus asiaticus and analysis on its outbreaks in over-lapping areas of farmland and pasture in Wulanchabu city. China Plant Protection26, 35–38. (in Chinese)

Yan G R, Xiao C L, He G W, Yin X F, Chen N P, Cao Y, He Q Y. 2010. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics10, 976–986.

Zhang J, Li L, Li J, Liu Y, Zhang C Y, Zhang Y, Zen K. 2015. Protein tyrosine phosphatase 1B impairs diabetic wound healing through vascular endothelial growth factor receptor 2 dephosphorylation. ArteriosclerosisThrombosisand Vascular Biology35, 163–174.

Zhao S T, Li J C. 2015. Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the MicroRNA-17/PTK6/ERK1/2 pathway. PLoS ONE, 10, e0119148.

Zhao Y G, Song W J, Wang Z Y, Wang Z Q, Jin X, Xu J C, Bai L, Li Y Y, Cui J W, Cai L. 2018. Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: Role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biology14, 609–617.

[1] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
No Suggested Reading articles found!