Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2778-2791    DOI: 10.1016/j.jia.2024.03.055
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022
Libin Liang1*#, Yaning Bai1*, Wenyan Huang1*, Pengfei Ren1*, Xing Li1, Dou Wang1, Yuhan Yang1, Zhen Gao1, Jiao Tang1, Xingchen Wu1, Shimin Gao1, Yanna Guo1, Mingming Hu2, Zhiwei Wang2, Zhongbing Wang2, Haili Ma1#, Junping Li1#
1 College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
2 Shanxi Provincial Animal Disease Prevention and Control Center, Taiyuan 030000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
H9N2亚型禽流感病毒(AIV)在全球范围内的家禽和野鸟中广泛流行,已成为我国家禽中流行的主要亚型。H9N2 AIV可以直接感染人,并且可以为近年来出现的H5N6H7N9H3N8等直接跨种传播感染人的毒株提供内部基因,对公共卫生安全构成重大威胁。目前,针对中国山西地区H9N2 AIV的流行情况、遗传演化、对家禽和哺乳动物的致病性、抗原性变异情况等缺乏深入研究。本研究对2020年2022年在山西省分离到的14株H9N2病毒进行了系统的遗传演化及生物学特性分析。全基因组序列测定及遗传进化分析显示这些H9N2病毒可以划分为7个不同的基因型,不同毒株的基因片段来源复杂多样。动物实验结果表明,本研究分离到的在鸡群中具有高效传播效率,并且在鸡体内具有不同的复制能力;H9N2 毒株可以在小鼠的肺部进行高水平复制,尤其值得关注的是其中一株病毒可以在小鼠的大脑和肾脏等器官中复制,提示其在哺乳动物体内的组织嗜性及致病性进一步增强。在体外细胞水平,利用噬斑形成试验及多步生长曲线试验评估了不同H9N2毒株的复制能力,发现不同H9N2病毒在细胞水平的复制和增殖效率同样具有明显差异。进一步利用双荧光素酶报告系统评估了在体内及细胞水平复制能力均差异明显的两株H9N2病毒的聚合酶活性,发现复制能力强的毒株具有更高的聚合酶活性,而且这种高聚合酶活性主要与二者的PB2NP基因有关。为评估H9N2分离株的抗原性是否有差异,在利用SPF鸡制备抗血清的基础上,应用交叉血凝抑制试验进行了抗原性分析。抗原性分析结果表明,这些H9N2分离株形成了两个独立的抗原群,抗原性存在显著差异。本研究从H9N2病毒遗传演化、动物体内的复制能力及致病性、体外细胞水平复制能力、抗原性变异情况等,对山西地区H9N2病毒进行了系统研究,为了解我国中部地区H9N2 AIV的流行情况及生物学特性提供了重要参考。


Abstract  
The H9N2 subtype of avian influenza virus (AIV) is widely prevalent in poultry and wild birds globally, and has become the predominant subtype circulating in poultry in China.  The H9N2 AIV can directly or indirectly (by serving as a “donor virus”) infect humans, posing a significant threat to public health.  Currently, there is a lack of in-depth research on the prevalence of H9N2 viruses in Shanxi Province, central China.  In this study, we isolated 14 H9N2 AIVs from October 2020 to April 2022 in Shanxi Province, and genetic analysis revealed that these viruses belonged to 7 different genotypes.  Our study on animals revealed that the H9N2 strains we identified displayed high transmission efficiency among chicken populations, and exhibited diverse replication abilities within these birds.  These viruses could replicate efficiently in the lungs of mice, with one strain also demonstrating the capacity to reproduce in organs like the brain and kidneys.  At the cellular level, the replication ability of different H9N2 strains was evaluated using plaque formation assays and multi-step growth curve assays, revealing significant differences in the replication and proliferation efficiency of the various H9N2 viruses at the cellular level.  The antigenicity analysis suggested that these isolates could be classified into 2 separate antigenic clusters.  Our research provides crucial data to help understand the prevalence and biological characteristics of H9N2 AIVs in central China.  It also highlights the necessity of enhancing the surveillance of H9N2 AIVs.
Keywords:  avian influenza virus       H9N2        central China        pathogenicity        antigenicity  
Received: 29 November 2023   Accepted: 07 February 2024
Fund: 
This work was supported by the Fundamental Research Program of Shanxi Province, China (202103021224156), the National Natural Science Foundation of China (32202788), the Special Research Fund of Shanxi Agricultural University for High-level Talents, China  (2021XG004), the special fund for Science and Technology Innovation Teams of Shanxi Province, China (202304051001041), the Science and Technology Innovation Program of Shanxi Agricultural University, China (2021BQ78), the Shanxi Province Excellent Doctoral Work Award-Scientific Research Project, China  (SXBYKY2021005, SXBYKY2021063, SXBYKY2022014), the Fund for Shanxi “1331 Project”, China (20211331-13), the earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province, China. 
About author:  #Correspondence Libin Liang, Tel: +86-354-6285988, E-mail: lianglibin521@126.com; Junping Li, Tel: +86-354-6285988, E-mail: lijunping916@163.com; Haili Ma, Tel: +86-354-6288629, E-mail: mahaili1718@126.com * These authors contributed equally to this study.

Cite this article: 

Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. 2024. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022. Journal of Integrative Agriculture, 23(8): 2778-2791.

Arai Y, Kawashita N, Ibrahim M S, Elgendy E M, Daidoji T, Ono T, Takagi T, Nakaya T, Matsumoto K, Watanabe Y. 2019. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathogens15, e1007919.

Bateman A C, Busch M G, Karasin A I, Bovin N, Olsen C W. 2008. Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for alpha 2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. Journal of Virology82, 8204–8209.

Both G W, Shi C H, Kilbourne E D. 1983. Hemagglutinin of swine influenza virus: A single amino acid change pleiotropically affects viral antigenicity and replication. Proceedings of the National Academy of Sciences of the United States of America80, 6996–7000.

Bi Y, Li J, Li S, Fu G, Jin T, Zhang C, Yang Y, Ma Z, Tian W, Li J, Xiao S, Li L, Yin R, Zhang Y, Wang L, Qin Y, Yao Z, Meng F, Hu D, Li D, et al. 2020. Dominant subtype switch in avian influenza viruses during 2016–2019 in China. Nature Communications11, 5909.

Bi Y, Lu L, Li J, Yin Y, Zhang Y, Gao H, Qin Z, Zeshan B, Liu J, Sun L, Liu W. 2011. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice. Virology Journal8, 505.

Butt A M, Siddique S, Idrees M, Tong Y G. 2010. Avian influenza A (H9N2): Computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virology Journal7, 319.

Carnaccini S, Perez D R. 2020. H9 influenza viruses: An emerging challenge. Cold Spring Harbor Perspectives in Medicine10, a038588.

Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Webster R G, Yu K. 2004. The evolution of H5N1 influenza viruses in ducks in southern China. Proceedings of the National Academy of Sciences of the United States of America101, 10452–10457.

Cui P, Shi J, Yan C, Wang C, Zhang Y, Zhang Y, Xing X, Chen Y, Zhang J, Liu L, Zeng X, Tian G, Li C, Suzuki Y, Deng G, Chen H. 2023. Analysis of avian influenza A (H3N8) viruses in poultry and their zoonotic potential, China, September 2021 to May 2022. Euro Surveillance28, 2200871.

Fan M, Liang B, Zhao Y, Zhang Y, Liu Q, Tian M, Zheng Y, Xia H, Suzuki Y, Chen H, Ping J. 2022. Mutations of 127, 183 and 212 residues on the HA globular head affect the antigenicity, replication and pathogenicity of H9N2 avian influenza virus. Transboundary and Emerging Diseases69, e659–e670.

Fusaro A, Monne I, Salviato A, Valastro V, Schivo A, Amarin N M, Gonzalez C, Ismail M M, Al-Ankari A R, Al-Blowi M H, Khan O A, Maken Ali A S, Hedayati A, Garcia J G, Ziay G M, Shoushtari A, Al Qahtani K N, Capua I, Holmes E C, Cattoli G. 2011. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. Journal of Virology85, 8413–8421.

Gao W, Zu Z, Liu J, Song J, Wang X, Wang C, Liu L, Tong Q, Wang M, Sun H, Sun Y, Liu J, Chang K C, Pu J. 2019. Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-beta induction in human cells. The Journal of General Virology100, 1273–1281.

Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens5, e1000709.

Guo J, Wang Y, Zhao C, Gao X, Zhang Y, Li J, Wang M, Zhang H, Liu W, Wang C, Xia Y, Xu L, He G, Shen J, Sun X, Wang W, Han X, Zhang X, Hou Z, Jin X, et al. 2021. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerging Microbes & Infection10, 2098–2112.

Guo Q F, Zou L R, Yu J X, Song Y C, Liang L J, Zhuang X, Song T, Wu J. 2020. First human infection with avian influenza H9N2-Guangdong Province, China, 2020. China CDC Weekly2, 545–548.

Guo Y, Ding P, Li Y, Zhang Y, Zheng Y, Yu M, Suzuki Y, Zhang H, Ping J. 2022. Genetic and biological properties of H10N3 avian influenza viruses: A potential pandemic candidate? Transboundary and Emerging Diseases69, e3171-e3182.

Guo Y, Krauss S, Senne D A, Mo I P, Lo K S, Xiong X, Norwood M, Shortridge K F, Webster R G, Guan Y. 2000. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology267, 279–288.

He J, Wu Q, Yu J L, He L, Sun Y, Shi Y L, Chen Q Q, Ge Y L, Zhang Z H, Li W W, Hou S, Zhu M, Wu J B, Su B, Hu W, Pan H F. 2020. Sporadic occurrence of H9N2 avian influenza infections in human in Anhui province, eastern China: A notable problem. Microbial Pathogenesis140, 103940.

Homme P J, Easterday B C. 1970. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin–1966 virus. Avian Disease14, 66–74.

Hossain M J, Hickman D, Perez D R. 2008. Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens. Public Library of Science One3, e3170.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution30, 772–780.

Khan S U, Anderson B D, Heil G L, Liang S, Gray G C. 2015. A systematic review and meta-analysis of the seroprevalence of influenza A (H9N2) infection among humans. The Journal of Infectious Diseases212, 562–569.

Kishida N, Sakoda Y, Eto M, Sunaga Y, Kida H. 2004. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Archives of Virology149, 2095–2104.

Li C, Yu K, Tian G, Yu D, Liu L, Jing B, Ping J, Chen H. 2005. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology340, 70–83.

Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, He X, Wang K, Chen J, Li Y, Fan J, Kong H, Gu C, Guan Y, Suzuki Y, Kawaoka Y, Liu L, Jiang Y, Tian G, Li Y, et al. 2014. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathogens10, e1004508.

Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of Virology79, 12058–12064.

Liang L, Deng G, Shi J, Wang S, Zhang Q, Kong H, Gu C, Guan Y, Suzuki Y, Li Y, Jiang Y, Tian G, Liu L, Li C, Chen H. 2016. Genetics, receptor binding, replication, and mammalian transmission of H4 avian influenza viruses isolated from live poultry markets in China. Journal of Virology90, 1455–1469.

Liang L, Jiang L, Li J, Zhao Q, Wang J, He X, Huang S, Wang Q, Zhao Y, Wang G, Sun N, Deng G, Shi J, Tian G, Zeng X, Jiang Y, Liu L, Liu J, Chen P, Bu Z, et al. 2019. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. mBio10, e01162–19.

Liu K, Wang X, Jiang D, Xu N, Gao R, Han W, Gu M, Hu J, Liu X, Hu S, Liu X. 2021. Pathogenicity and transmissibility of an H9N2 avian influenza virus that naturally harbors the mammalian-adaptive molecular factors in the hemagglutinin and PB2 proteins. The Journal of Infection82, e22–e23.

Murakami J, Shibata A, Neumann G, Imai M, Watanabe T, Kawaoka Y. 2022. Characterization of H9N2 avian influenza viruses isolated from poultry products in a mouse model. Viruses14, 728.

Nguyen N M, Sung H W, Yun K J, Park H, Yeo S J. 2020. Genetic characterization of a novel North American-origin avian influenza A (H6N5) virus isolated from bean goose of South Korea in 2018. Viruses12, 774.

Peacock T H P, James J, Sealy J E, Iqbal M. 2019. A global perspective on H9N2 avian influenza virus. Viruses11, 620.

Ping J, Dankar S K, Forbes N E, Keleta L, Zhou Y, Tyler S, Brown E G. 2010. PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus. Journal of Virology84, 10606–10618.

Pu J, Wang S, Yin Y, Zhang G, Carter R A, Wang J, Xu G, Sun H, Wang M, Wen C, Wei Y, Wang D, Zhu B, Lemmon G, Jiao Y, Duan S, Wang Q, Du Q, Sun M, Bao J, et al. 2015. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proceedings of the National Academy of Sciences of the United States of America112, 548–553.

Qi W, Zhou X, Shi W, Huang L, Xia W, Liu D, Li H, Chen S, Lei F, Cao L, Wu J, He F, Song W, Li Q, Li H, Liao M, Liu M. 2014. Genesis of the novel human-infecting influenza A (H10N8) virus and potential genetic diversity of the virus in poultry, China. Eurosurveillance19, 20841.

Shi J, Deng G, Kong H, Gu C, Ma S, Yin X, Zeng X, Cui P, Chen Y, Yang H, Wan X, Wang X, Liu L, Chen P, Jiang Y, Liu J, Guan Y, Suzuki Y, Li M, Qu Z, et al. 2017. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Research27, 1409–1421.

Shi J, Deng G, Liu P, Zhou J, Guan L, Li W, Li X, Guo J, Wang G, Fan J, Wang J, Li Y, Jiang Y, Liu L, Tian G, Li C, Chen H. 2013. Isolation and characterization of H7N9 viruses from live poultry markets-Implication of the source of current H7N9 infection in humans. Chinese Science Bulletin58, 1857–1863.

Smith D J, Lapedes A S, de Jong J C, Bestebroer T M, Rimmelzwaan G F, Osterhaus A D, Fouchier R A. 2004. Mapping the antigenic and genetic evolution of influenza virus. Science305, 371–376.

Smithies L K, Radloff D B, Friedell R W, Albright G W, Misner V E, Easterday B C. 1969. Two different type A influenza virus infections in turkeys in Wisconsin. I. 1965–66 outbreak. Avian Disease13, 603–606.

Song J, Feng H, Xu J, Zhao D, Shi J, Li Y, Deng G, Jiang Y, Li X, Zhu P, Guan Y, Bu Z, Kawaoka Y, Chen H. 2011. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. Journal of Virology85, 2180–2188.

Sun H, Li H, Tong Q, Han Q, Liu J, Yu H, Song H, Qi J, Li J, Yang J, Lan R, Deng G, Chang H, Qu Y, Pu J, Sun Y, Lan Y, Wang D, Shi Y, Liu W J, et al. 2023. Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets. Cell186, 4074–4084.

Taft A S, Ozawa M, Fitch A, Depasse J V, Halfmann P J, Hill-Batorski L, Hatta M, Friedrich T C, Lopes T J, Maher E A, Ghedin E, Macken C A, Neumann G, Kawaoka Y. 2015. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nature Communications6, 7491.

Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen L, Johnson A, Tao Y, Dreyfus C, Yu W L, McBride R, Carney P J, Gilbert A T, Chang J, Guo Z, et al. 2013. New world bats harbor diverse influenza a viruses. PLoS Pathogens9, e1003657.

Um S, Siegers J Y, Sar B, Chin S, Patel S, Bunnary S, Hak M, Sor S, Sokhen O, Heng S, Chau D, Sothyra T, Khalakdina A, Mott J A, Olsen S J, Claes F, Sovann L, Karlsson E A. 2021. Human infection with avian influenza A (H9N2) virus, Cambodia, February 2021. Emerging Infectious Diseases27, 2742–2745.

Vines A, Wells K, Matrosovich M, Castrucci M R, Ito T, Kawaoka Y. 1998. The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. Journal of Virology72, 7626–7631.

de Vries R P, Peng W, Grant O C, Thompson A J, Zhu X, Bouwman K M, de la Pena A T T, van Breemen M J, Ambepitiya Wickramasinghe I N, de Haan C A M, Yu W, McBride R, Sanders R W, Woods R J, Verheije M H, Wilson I A, Paulson J C. 2017. Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathogens13, e1006390.

Wang G, Zhang J, Kong F, Li Q, Wang J, Ma S, Zhao Y, Liang L, Li J, Sun N, Guan L, Zhou Y, Zhou C, Huang S, Bu Z, Jiang L, Chen H, Li C. 2018. Generation and application of replication-competent Venus-expressing H5N1, H7N9, and H9N2 influenza A viruses. Science Bulletin63, 176–186.

Xiao C, Ma W, Sun N, Huang L, Li Y, Zeng Z, Wen Y, Zhang Z, Li H, Li Q, Yu Y, Zheng Y, Liu S, Hu P, Zhang X, Ning Z, Qi W, Liao M. 2016. PB2–588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Scientific Reports6, 19474.

Xu J, Li S, Yang Y, Liu B, Yang H, Li T, Zhang L, Li W, Luo X, Zhang L, Pan M. 2018. Human infection with a further evolved avian H9N2 influenza A virus in Sichuan, China. Science China (Life Sciences), 61, 604–606.

Yan W, Cui H, Engelsma M, Beerens N, van Oers M M, de Jong M C M, Li X, Liu Q, Yang J, Teng Q, Li Z. 2022. Molecular and antigenic characterization of avian H9N2 viruses in Southern China. Microbiology Spectrum10, e0082221.

Yang R, Sun H, Gao F, Luo K, Huang Z, Tong Q, Song H, Han Q, Liu J, Lan Y, Qi J, Li H, Chen S, Xu M, Qiu J, Zeng G, Zhang X, Huang C, Pei R, Zhan Z, et al. 2022. Human infection of avian influenza A H3N8 virus and the viral origins: A descriptive study. Lancet Microbe3, e824–e834.

Yang Z, Mok C, Peiris J, Zhong N. 2015. Human infection with a novel avian influenza A (H5N6) virus. The New England Journal of Medicine373, 487–489.

Yin X, Deng G, Zeng X, Cui P, Hou Y, Liu Y, Fang J, Pan S, Wang D, Chen X, Zhang Y, Wang X, Tian G, Li Y, Chen Y, Liu L, Suzuki Y, Guan Y, Li C, Shi J, Chen H. 2021. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathogens17, e1009561.

Yuan R, Liang L, Wu J, Kang Y, Song Y, Zou L, Zhang X, Ni H, Ke C. 2017. Human infection with an avian influenza A/H9N2 virus in Guangdong in 2016. Journal of Infection74, 422–425.

Zeng X, He X, Meng F, Ma Q, Wang Y, Bao H, Liu Y, Deng G, Shi J, Li Y, Tian G, Chen H. 2022. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses. Journal of Integrative Agriculture, 21, 2086–2094.

Zhang J, Huang L, Liao M, Qi W. 2023. H9N2 avian influenza viruses: Challenges and the way forward. Lancet Microbe4, e70–e71.

Zhang Q, Shi J, Deng G, Guo J, Zeng X, He X, Kong H, Gu C, Li X, Liu J, Wang G, Chen Y, Liu L, Liang L, Li Y, Fan J, Wang J, Li W, Guan L, Li Q, et al. 2013. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science341, 410–414.

Zhang X, Li Y, Jin S, Wang T, Sun W, Zhang Y, Li F, Zhao M, Sun L, Hu X, Feng N, Xie Y, Zhao Y, Yang S, Xia X, Gao Y. 2021. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transboundary and Emerging Diseases69, 669–684.

Zhao Y, Zhao Y, Liu S, Xiao Y, Li N, Liu K, Meng F, Zhao J, Liu M, Li B. 2023. Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021. Journal of Integrative Agriculture22, 881–896.

Zhu Y, Hu S, Bai T, Yang L, Zhao X, Zhu W, Huang Y, Deng Z, Zhang H, Bai Z, Yu M, Huang J, Shu Y. 2014. Phylogenetic and antigenic characterization of reassortant H9N2 avian influenza viruses isolated from wild waterfowl in the East Dongting Lake wetland in 2011–2012. Virology Journal11, 77.

[1] Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding. Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3055-3065.
[2] Zenglei Hu, Ya Huang, Jiao Hu, Xiaoquan Wang, Shunlin Hu, Xiufan Liu.

Antibodies elicited by Newcastle disease virus-vectored H7N9 avian influenza vaccine are functional in activating the complement system [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2052-2064.

[3] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[4] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

[5] SHI Lin, YU Xue-wu, YAO Wei, YU Ben-liang, HE Li-kun, GAO Yuan, ZHANG Yun-xian, TIAN Guo-bin, PING Ji-hui, WANG Xiu-rong. Development of a reverse-transcription loop-mediated isothermal amplification assay to detect avian influenza viruses in clinical specimens[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1428-1435.
[6] WEI Yan-di, GAO Wei-hua, SUN Hong-lei, YU Chen-fang, PEI Xing-yao, Sun Yi-peng, LIU Jin-hua, PU Juan. A duplex RT-PCR assay for detection of H9 subtype avian influenza viruses and infectious bronchitis viruses[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2105-2113.
[7] SU Xiao-na, XIE Qing-mei, LIAO Chang-tao, YAN Zhuan-qiang, CHEN Wei-guo, BI Ying-zuo, CHEN Feng. Sequence and phylogenetic analysis of hemagglutinin genes of H9N2 influenza viruses isolated from chicken in China from 2013 to 2015[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2604-2612.
No Suggested Reading articles found!