Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 217-227    DOI: 10.1016/j.jia.2023.02.040
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs

Mu Zeng1, 2, 3, Binhu Wang3, Lei Liu3, Yalan Yang2, 3#, Zhonglin Tang2, 3#

1 Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China

2 Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528200, China

3 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture/Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

目的:生长性状是猪最重要的经济性状之一,其遗传机制复杂,由微效多基因调控。背膘厚、眼肌面积和100 kg体重日龄等性状通常是用作评估生长性能的主要指标。然而,目前可用于生产性状遗传改良的分子遗传标记仍然较少。本研究旨在挖掘与猪产肉性状相关的遗传标记位点,为猪的分子育种提供新的靶标。方法:我们选取了杜洛克、长白、大白三个品种共1186头纯种猪,记录所有个体的背膘厚、眼肌面积和100 kg体重日龄等表型信息,使用猪Neogen GGP 80K SNP芯片1,186头纯种猪进行全基因组基因分型。用PLINK对数据进行清洗,用Beagle填充缺失的基因型数据,GCTA用于计算三个性状的遗传力、遗传相关性和表型相关性。我们使用GAPIT的四不同统计模型进行全基因组关联分析(Genome-wide association study, GWAS),并筛选出至少在两种模型中被检测到的单核苷酸多态性(Single nucleotide polymorphism, SNP)位点,采用SnpEff包对候选SNPs位点进行功能注释,结合公共数据库pig QTLdb定位数量性状基因座(Quantitative trait loci, QLT),并利用课题组的转录组数据分析候选基因在骨骼肌生长发育过程中的表达模式。结果:研究结果表明,背膘厚、眼肌面积和达100 kg日龄的遗传力分别为:0.35±0.06、0.38±0.060.51±0.05。通过GWAS分析鉴定12个与生长性状相关的高置信度SNPs,其中5(2_161686082, WU_10.2_1_311973532, WU_10.2_1_312813451, WU_10.2_13_6181341, WU_10.2_7_134736770)与背膘厚显著相关,3(WU_10.2_1_311973532, WU_10.2_1_31309038, WU_10.2_12_18057237)与眼肌面积显著相关,6(WU_10.2_12_18057237, ALGA0072703, ASGA0040345, ASGA0098828, WU_10.2_10_735574, ASGA0080085)与达100 kg日龄显著相关。通过位点注释及QTL定位,发现6个候选基因(SKAP2, SATB1, PDE7B, PPP1R16B, WNT3, WNT9B)可能与猪的生长性状相关。转录组数据分析表明,SKAP2在出生前的骨骼肌中表达水平高于出生后,PDE7B在出生前骨骼肌中表达逐渐上调,在出生后表达水平降低,提示这些基因可能在骨骼肌生长发育中扮演重要的作用。结论与创新性:本研究通过使用四种统计模型对猪生长性状进行全基因组关联分析,鉴定到12SNPs6个关键候选基因与生长性状相关,并分析其表达模式和潜在功能,为猪产肉性状的遗传改良提供了新的候选位点和基因,有助于猪产肉性状的遗传解析,但是候选位点和基因的功能和调控机制仍有待进一步解析。



Abstract  

Growth traits are among the most important economic traits in pigs and are regulated by polygenes with complex regulatory mechanisms.  As the major indicators of growth performance, the backfat thickness (BFT), loin eye area (LEA), and days to 100 kg (D100) traits are commonly used to the genetics improvement in pigs.  However, the available genetic markers for these traits are limited.  To uncover novel loci and candidate genes associated with growth performance, we collected the phenotypic information of BFT, LEA, and D100 in 1,186 pigs and genotyped all these individuals using the Neogen GGP porcine 80K BeadChip.  We performed a genome-wide association study (GWAS) using 4 statistical models, including mixed linear models (MLM), fixed and random model circulating probability unification (FarmCPU), settlement of MLM under progressively exclusive relationships (SUPER), Bayesian-information and linkage-disequilibrium Iteratively nested keyway (Blink), and identified 5, 3, and 6 high-confidence single nucleotide polymorphisms (SNPs) associated with BFT, LEA, and D100, respectively.  Variant annotation and quantitative trait locus (QTL) mapping analysis suggested that 6 genes (SKAP2, SATB1, PDE7B, PPP1R16B, WNT3, and WNT9B) were potentially associated with growth performance in pigs.  Transcriptome analysis suggested that the expression of Src Kinase Associated Phosphoprotein 2 (SKAP2) was higher in prenatal muscles than in postnatal muscles, and the expression of Phosphodiesterase 7B (PDE7B) continuously increased during the prenatal stages and gradually decreased after birth, implying their potential roles in prenatal skeletal muscle development.  Overall, this study provides new candidate loci and genes for the genetic improvement of pigs.

Keywords:  GWAS        pig        growth trait        QTL ma pping        skeletal muscle


  
Received: 23 November 2022   Accepted: 16 January 2023
Fund: 

This research was supported by the National Natural Science Foundation of China (32172697, 31830090 , and 32002151), the Guangdong Provincial Natural Science Foundation, China (2021A1515011336), and the Chinese Academy of Agricultural Sciences (CAAS-ZDRW202006).

About author:  Mu Zeng, E-mail: zengmu0520@163.com; #Correspondence Zhonglin Tang, E-mail: tangzhonglin@caas.cn; Yalan Yang, E-mail: yangyalan@caas.cn

Cite this article: 

Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. 2024. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs. Journal of Integrative Agriculture, 23(1): 217-227.

Bastiaanse H, Zinkgraf M, Canning C, Tsai H, Lieberman M, Comai L, Henry I, Groover A. 2019. A comprehensive genomic scan reveals gene dosage balance impacts on quantitative traits in Populus trees. Proceedings of the National Academy of Sciences of United States of America, 116, 13690–13699.

Bender A T, Beavo J A. 2006. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacological Reviews, 58, 488–520.

Berdeaux R, Stewart R. 2012. cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. American Journal of Physiology-Endocrinology and Metabolism, 303, 1–17.

Biscarini F, Nicolazzi E L, Stella A, Boettcher P J, Gandini G. 2015. Challenges and opportunities in genetic improvement of local livestock breeds. Frontiers in Genetics, 6, 33.

Boyle E A, Li Y I, Pritchard J K. 2017. An expanded view of complex traits: From polygenic to omnigenic. Cell, 169, 1177–1186.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

Browning B L, Zhou Y, Browning S R. 2018. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 103, 338–348.

Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80–92.

Ding R, Zhuang Z, Qiu Y, Ruan D, Wu J, Ye J, Cao L, Zhou S, Zheng E, Huang W. 2022. Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis. Journal of Animal Science, 100, 1–8.

Van Eenennaam A L, Young A E. 2019. Genetic improvement of food animals: Past and future. Encyclopedia of Food Security and Sustainability, 3, 171–180.

Flint J. 2013. GWAS. Current Biology, 23, 265–266.

Fontanesi L, Schiavo G, Galimberti G, Calò D G, Scotti E, Martelli P L, Buttazzoni L, Casadio R, Russo V. 2012. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genomics, 13, 1–9.

Fu Y, Xu J, Tang Z, Wang L, Yin D, Fan Y, Zhang D, Deng F, Zhang Y, Zhang H. 2020. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model. Communications Biology, 3, 1–11.

Ghelman J, Grewing L, Windener F, Albrecht S, Zarbock A, Kuhlmann T. 2021. SKAP2 as a new regulator of oligodendroglial migration and myelin sheath formation. Glia, 69, 2699–2716.

Hayes B. 2013. Overview of statistical methods for genome-wide association studies (GWAS). Genome-Wide Association Studies and Genomic Prediction, 1019, 149–169.

Hetman J, Soderling S, Glavas N, Beavo J. 2000. Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proceedings of the National Academy of Sciences of United States of America, 97, 472–476.

Hill W G. 2010. Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 73–85.

Hu Z L, Park C A, Reecy J M. 2022. Bringing the animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Research, 50, 956–961.

Huang M, Liu X, Zhou Y, Summers R M, Zhang Z. 2019. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience, 8, 1–12.

Imig J D, Merk D, Proschak E. 2021. Multi-target drugs for kidney diseases. Kidney360, 2, 1645–1653.

Krishnappa G, Savadi S, Tyagi B S, Singh S K, Mamrutha H M, Kumar S, Mishra C N, Khan H, Gangadhara K, Uday G. 2021. Integrated genomic selection for rapid improvement of crops. Genomics, 113, 1070–1086.

Kuhn R M, Haussler D, Kent W J. 2013. The UCSC genome browser and associated tools. Briefings in Bioinformatics, 14, 144–161.

Kunkel S D, Suneja M, Ebert S M, Bongers K S, Fox D K, Malmberg S E, Alipour F, Shields R K, Adams C M. 2011. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metabolism, 13, 627–638.

Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425, 832–836.

Liu X, Huang M, Fan B, Buckler E S, Zhang Z. 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics, 12, e1005767.

Liu X, Tian D, Li C, Tang B, Wang Z, Zhang R, Pan Y, Wang Y, Zou D, Zhang Z. 2023. GWAS atlas: An updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Research, 51, 969–976.

Liu Y, Fu Y, Yang Y, Yi G, Lian J, Xie B, Yao Y, Chen M, Niu Y, Liu L. 2022. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. Genetics Selection Evolution, 54, 62.

Malik P L, Janss L, Nielsen L K, Borum F, Jørgensen H, Eriksen B, Schjoerring J K, Rasmussen S K. 2019. Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits. Theoretical and Applied Genetics, 132, 3375–3398.

Mamoshina P, Volosnikova M, Ozerov I V, Putin E, Skibina E, Cortese F, Zhavoronkov A. 2018. Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Frontiers in Genetics, 9, 242.

Marees A T, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie‐Claire C, Derks E M. 2018. A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27, e1608.

Megerssa S H, Sorrells M E, Ammar K, Acevedo M, Bergstrom G C, Olivera P, Brown‐Guedira G, Ward B, Degete A G, Abeyo B. 2021. Genome‐wide association mapping of seedling and adult plant response to stem rust in a durum wheat panel. The Plant Genome, 14, e20105.

Mercadante S, Caraceni A. 2011. Conversion ratios for opioid switching in the treatment of cancer pain: A systematic review. Palliative Medicine, 25, 504–515.

Muráni E, Murániová M, Ponsuksili S, Schellander K, Wimmers K. 2007. Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Developmental Biology, 7, 1–16.

Nguyen G T, Shaban L, Mack M, Swanson K D, Bunnell S C, Sykes D B, Mecsas J. 2020. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife, 9, e56656.

De Paul A, Pons P, Aoki A, Torres A. 1997. Different behavior of lactotroph cell subpopulations in response to angiotensin II and thyrotrophin-releasing hormone. Cellular and Molecular Neurobiology, 17, 245–258.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, De Bakker P I, Daly M J. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575.

Ruan D, Zhuang Z, Ding R, Qiu Y, Zhou S, Wu J, Xu C, Hong L, Huang S, Zheng E. 2021. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. Genes, 12, 117.

Sasaki T, Kotera J, Yuasa K, Omori K. 2000. Identification of human PDE7B, a cAMP-specific phosphodiesterase. Biochemical and Biophysical Research Communications, 271, 575–583.

Silió L, Rodríguez M, Fernández A, Barragán C, Benítez R, Óvilo C, Fernández A. 2013. Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP‐derived metrics. Journal of Animal Breeding and Genetics, 130, 349–360.

Tang H, Mayersohn M. 2018. Porcine prediction of pharmacokinetic parameters in people: A pig in a poke? Drug Metabolism and Disposition, 46, 1712–1724.

Tang S, Xin Y, Ma Y, Xu X, Zhao S, Cao J. 2020. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract. Frontiers in Microbiology, 11, 586776.

Tang Z, Yang Y, Wang Z, Zhao S, Mu Y, Li K. 2015. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Scientific Reports, 5, 1–19.

Teng J Y, Ye S P, Gao N, Chen Z T, Diao S Q, Li X J, Yuan X L, Zhang H, Li J Q, Zhang X Q, Zhang Z. 2022. Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data. Journal of Integrative Agriculture, 21, 1126–1136.

Tumasian III R A, Harish A, Kundu G, Yang J H, Ubaida-Mohien C, Gonzalez-Freire M, Kaileh M, Zukley L M, Chia C W, Lyashkov A. 2021. Skeletal muscle transcriptome in healthy aging. Nature Communications, 12, 2014.

Vidal O, Noguera J, Amills M, Varona L, Gil M, Jiménez N, Davalos G, Folch J, Sanchez A. 2005. Identification of carcass and meat quality quantitative trait loci in a Landrace pig population selected for growth and leanness. Journal of Animal Science, 83, 293–300.

Wang J, Zhang Z. 2021. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genomics, Proteomics & Bioinformatics, 19, 629–640.

Wang J, Zhou Z, Zhang Z, Li H, Liu D, Zhang Q, Bradbury P J, Buckler E S, Zhang Z. 2018. Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits. Heredity, 121, 648–662.

Wu P, Zhou J, Wang K, Chen D, Yang X, Liu Y, Jiang A, Shen L, Jin L, Xiao W. 2021. Identifying SNPs associated with birth weight and days to 100 kg traits in Yorkshire pigs based on genotyping-by-sequencing. Journal of Integrative Agriculture, 20, 2483–2490.

Wu Y, Zhao J, Xu C, Ma N, He T, Zhao J, Ma X, Thacker P A. 2020. Progress towards pig nutrition in the last 27 years. Journal of the Science of Food and Agriculture, 100, 5102–5110.

Xiong X, Yang H, Yang B, Chen C, Huang L. 2015. Identification of quantitative trait transcripts for growth traits in the large scales of liver and muscle samples. Physiological Genomics, 47, 274–280.

Xue Y, Li C, Duan D, Wang M, Han X, Wang K, Qiao R, Li X J, Li X L. 2021. Genome‐wide association studies for growth‐related traits in a crossbreed pig population. Animal Genetics, 52, 217–222.

Yang B, Cui L, Perez-Enciso M, Traspov A, Crooijmans R P, Zinovieva N, Schook L B, Archibald A, Gatphayak K, Knorr C. 2017. Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution, 49, 1–15.

Yang J, Lee S H, Goddard M E, Visscher P M. 2011. GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88, 76–82.

Yang Y, Fan X, Yan J, Chen M, Zhu M, Tang Y, Liu S, Tang Z. 2021a. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Research, 49, 1313–1329.

Yang Y, Yan J, Fan X, Chen J, Wang Z, Liu X, Yi G, Liu Y, Niu Y, Zhang L. 2021b. The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs. PLoS Genetics, 17, e1009910.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X. 2021. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19, 619–628.

Yu J, Pressoir G, Briggs W H, Vroh B I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38, 203–208.

Yu X, Wang Z, Sun H, Yang Y, Li K, Tang Z. 2018. Long non‐coding MEG 3 is a marker for skeletal muscle development and meat production traits in pigs. Animal Genetics, 49, 571–578.

Zhang Z P, Xing S Y, Qiu A, Zhang N, Wang W W, Qian C S, Zhang J N, Wang C D, Zhang Q, Ding X D. 2023. The development of a porcine 50K SNP panel using genotyping by target sequencing and its application. Journal of Integrative Agriculture, 22, doi: 10.1016/j.jia.2023.07.033.

Zhou R, Yang Y L, Liu Y, Chen J, Yang B, Tand Z L. 2023. High serum reproductive hormone levels at mid-pregnancy support Meishan pig prolificacy. Journal of Integrative Agriculture, 22, 3489–3499.



No related articles found!
No Suggested Reading articles found!