Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1695-1703    DOI: 10.1016/j.jia.2023.04.002
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Metabolomic and transcriptomic analysis reveals the molecular mechanism by which blue light promotes lutein synthesis in strawberry

CHEN Xiao-dong, CAI Wei-jian, XIA Jin, YUAN Hua-zhao, WANG Qing-lian, PANG Fu-hua, ZHAO Mi-zhen# #br#

Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

类胡萝卜素是人类饮食的重要组成部分,水果是类胡萝卜素的主要来源。水果中类胡萝卜素的合成和调节对水果品质的形成非常重要。在中国,草莓是冬季种植的主要时令水果之一。先前的研究表明,光对草莓中花青素、糖和多酚的代谢有很大影响。然而,我们对光如何调节草莓中类胡萝卜素代谢的机理还知之甚少。在本研究中,我们研究了蓝光、红光、黄绿光和白光对草莓中类胡萝卜素代谢的影响。我们的研究表明蓝光处理促进了草莓中叶黄素等多种类胡萝卜素的合成。转录组测序数据显示,蓝光处理促进了草莓中番茄红素ε-环化酶(FaLCYE)编码基因的表达。在草莓果实中瞬时过量表达FaLCYE可促进叶黄素在草莓中的积累。综上,我们的研究结果表明蓝光可以通过诱导FaLCYE的表达从而促进草莓中叶黄素的合成。



Abstract  

Carotenoids are an important component of the human diet, and fruit is a primary source of carotenoids.  The synthesis and regulation of carotenoids in fruit are important contributors to the formation of fruit quality.  In China, strawberry is one of the main seasonal fruits grown in the winter.  Previous studies have shown that light has a significant effect on the metabolism of anthocyanins, sugars, and polyphenols in strawberry.  However, the understanding of the role of light in regulating the metabolism of carotenoids in strawberry remains limited.  This study investigated the effects of blue, red, yellow-green, and white light on carotenoid metabolism in strawberry.  Blue light treatment promoted the synthesis of multiple carotenoids, including lutein, compared with the other three treatment groups.  The RNA sequencing data revealed that blue light treatment promoted the expression of lycopene ε-cyclase (LCYE), and the transient overexpression of LCYE in strawberry fruit promoted lutein accumulation in strawberry.  Overall, the results suggest that blue light can promote the synthesis of lutein in strawberry by inducing the expression of LCYE.

Keywords:  carotenoid       LED light        strawberry        lutein  
Received: 05 August 2022   Online: 15 April 2023   Accepted: 24 March 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (31901996), the Natural Science Foundation of Jiangsu Province, China (BK20190264), and the Major Agricultural New Varieties Creation Project of Jiangsu Province, China (PZCZ201721). 

About author:  CHEN Xiao-dong, E-mail: nwsuaf612@163.com; #Correspondence ZHAO Mi-zhen, E-mail: njzhaomz@163.com

Cite this article: 

CHEN Xiao-dong, CAI Wei-jian, XIA Jin, YUAN Hua-zhao, WANG Qing-lian, PANG Fu-hua, ZHAO Mi-zhen. 2023. Metabolomic and transcriptomic analysis reveals the molecular mechanism by which blue light promotes lutein synthesis in strawberry. Journal of Integrative Agriculture, 22(6): 1695-1703.

Afrin S, Gasparrini M, Forbes-Hernandez T Y, Reboredo-Rodriguez P, Mezzetti B, Varela-López A, Giampieri F, Battino M. 2016. Promising health benefits of the strawberry: A focus on clinical studies. Journal of Agricultural and Food Chemistry64, 4435–4449.

Alrifai O, Hao X, Marcone M F, Tsao R. 2019. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Journal of Agricultural and Food Chemistry67, 6075–6090.

Ampomah-Dwamena C, Dejnoprat S, Lewis D, Sutherland P, Volz R K, Allan A C. 2012. Metabolic and gene expression analysis of apple (Malus×domestica) carotenogenesis. Journal of Experimental Botany63, 4497–4511.

Bailey T L, Johnson J, Grant C E, Noble W S. 2015. The MEME Suite. Nucleic Acids Research43, W39–W49.

Balcerowicz M. 2020. PHYTOCHROME-INTERACTING FACTORS at the interface of light and temperature signalling. Physiologia Plantarum169, 347–356.

Bhat I, Mamatha B S. 2021. Genetic factors involved in modulating lutein bioavailability. Nutrition Research91, 36–43.

Bianchetti R E, Lira B S, Monteiro S S, Demarco D, Purgatto E, Rothan C, Rossi M, Freschi L. 2018. Fruit-localized phytochromes regulate plastid biogenesis, starch synthesis, and carotenoid metabolism in tomato. Journal of Experimental Botany69, 3573–3586.

Cao S, Liang M, Shi L, Shao J, Song C, Bian K, Chen W, Yang Z. 2017. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chemistry214, 137–146.

Chen X, Cai W, Xia J, Yu H, Wang Q, Pang F, Zhao M. 2020. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry. Journal of Agricultural and Food Chemistry68, 12485–12492.

Chong L, Ghate V, Zhou W, Yuk H G. 2022. Developing an LED preservation technology to minimize strawberry quality deterioration during distribution. Food Chemistry366, 130566.

Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics49, 1099–1106.

Gazzolo D, Picone S, Gaiero A, Bellettato M, Montrone G, Riccobene F, Lista G, Pellegrini G. 2021. Early pediatric benefit of lutein for maturing eyes and brain - An overview. Nutrients13, 3239.

Goodstein D M, Shu S, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research40, 1178–1186.

Hermanns A S, Zhou X, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal6, 343–360.

Hulsen T, de Vlieg J, Alkema W. 2008. BioVenn - A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics9, 488.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Lamesch P, Berardini T Z, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M. 2011. The Arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research40, D1202–D1210.

Li D, Mou W, Luo Z, Li L, Limwachiranon J, Mao L, Ying T. 2016. Developmental and stress regulation on expression of a novel miRNA, Fan-miR73, and its target ABI5 in strawberry. Scientific Reports6, 28385.

Llorente B, D’Andrea L, Ruiz-Sola M A, Botterweg E, Pulido P, Andilla J, Loza-Alvarez P, Rodriguez-Concepcion M. 2016. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. The Plant Journal85, 107–119.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Ma G, Zhang L, Kitaya Y, Seoka M, Kudaka R, Yahata M, Yamawaki K, Shimada T, Fujii H, Endo T, Kato M. 2021. Blue LED light induces regreening in the flavedo of Valencia orange in vitroFood Chemistry335, 127621.

Mitra S, Rauf A, Tareq A M, Jahan S, Emran T B, Shahriar T G, Dhama K, Alhumaydhi F A, Aljohani A S M, Rebezov M, Uddin M S, Jeandet P, Shah Z A, Shariati M A, Rengasamy K R. 2021. Potential health benefits of carotenoid lutein: An updated review. Food and Chemical Toxicology154, 112328.

Nisar N, Li L, Lu S, Khin N C, Pogson B J. 2015. Carotenoid metabolism in plants. Molecular Plant8, 68–82.

Ohmiya A, Kato M, Shimada T, Nashima K, Kishimoto S, Nagata M. 2019. Molecular basis of carotenoid accumulation in horticultural crops. The Horticulture Journal88, 135–149.

Paik I, Kathare P K, Kim J I, Huq E. 2017. Expanding roles of PIFs in signal integration from multiple processes. Molecular Plant10, 1035–1046.

Ren Y, Sun H, Deng J, Huang J, Chen F. 2021. Carotenoid production from microalgae: Biosynthesis, salinity responses and novel biotechnologies. Marine Drugs19, 713.

Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. 2000. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of β and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences of the United States of America97, 11102–11107.

Samuolienė G, Viršilė A, Brazaitytė A, Jankauskienė J, Sakalauskienė S, Vaštakaitė V, Novičkovas A, Viškelienė A, Sasnauskas A, Duchovskis P. 2017. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chemistry228, 50–56.

Stanley L, Yuan Y W. 2019. Transcriptional regulation of carotenoid biosynthesis in plants: So many regulators, so little consensus. Frontiers in Plant Science10, 1017.

Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. 2018. Carotenoid metabolism in plants: The role of plastids. Molecular Plant11, 58–74.

Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D. 2003. Functional analysis of β- and ε-ring carotenoid hydroxylases in Arabidopsis. The Plant Cell15, 1320–1332.

Tokunaga S, Morimoto D, Koyama T, Kubo Y, Shiroi M, Ohara K, Higashine T, Mori Y, Nakagawa S, Sawayama S. 2021. Enhanced lutein production in Chlamydomonas reinhardtii by overexpression of the lycopene epsilon cyclase gene. Applied Biochemistry and Biotechnology193, 1967–1978.

Toledo-Ortiz G, Johansson H, Lee K P, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday K J. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics10, e1004416.

Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature485, 635–641.

Verde I, Abbott A G, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori M T, Grimwood J, Cattonaro F. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics45, 487–494.

Warner R, Wu B S, MacPherson S, Lefsrud M. 2021. A review of strawberry photobiology and fruit flavonoids in controlled environments. Frontiers in Plant Science12, 611893.

Wu G A, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C, Domingo C, Tadeo F R, Carbonell-Caballero J, Alonso R. 2018. Genomics of the origin and evolution of Citrus. Nature554, 311–316.

Xiao L, Shibuya T, Kato K, Nishiyama M, Kanayama Y. 2022. Effects of light quality on plant development and fruit metabolism and their regulation by plant growth regulators in tomato. Scientia Horticulturae300, 111076.

Yuan Y, Ren S, Liu X, Su L, Wu Y, Zhang W, Li Y, Jiang Y, Wang H, Fu R, Bouzayen M, Liu M, Zhang Y. 2022. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. The New Phytologist234, 164–178.

Zhang Y, Jiang L, Li Y, Chen Q, Ye Y, Zhang Y, Luo Y, Sun B, Wang X, Tang H. 2018. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria×ananassa). Molecules23, 820.

Zhu H, Chen M, Wen Q, Li Y. 2015. Isolation and characterization of the carotenoid biosynthetic genes LCYBLCYE and CHXB from strawberry and their relation to carotenoid accumulation. Scientia Horticulturae182, 134–144.

[1] LI Rui-jie, ZHAI Hong, HE Shao-zhen, ZHANG Huan, ZHAO Ning, LIU Qing-chang. A geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid contents in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2538-2546.
[2] Hafiz Ghulam Muhu-Din Ahmed, Abdus Salam khan, LI Ming-ju, Sultan Habibullah Khan, Muhammad Kashif . Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2483-2491.
[3] LIU Min-xuan, ZHANG Zong-wen, REN Gui-xing, ZHANG Qi, WANG Yin-yue, LU Ping. Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlations with agronomic performance[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1449-1457.
[4] MA Dong-yun, SUN De-xiang, ZUO Yi, WANG Chen-yang, ZHU Yun-ji , GUO Tian-cai. Diversity of Antioxidant Content and Its Relationship to Grain Color and Morphological Characteristics in Winter Wheat Grains[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1258-1267.
[5] YU Ling, ZHAI Hong, CHEN Wei, HE Shao-zhen , LIU Qing-chang. Cloning and Functional Analysis of Lycopene ε-Cyclase (IbLCYe) Gene from Sweetpotato, Ipomoea batatas (L.) Lam.[J]. >Journal of Integrative Agriculture, 2013, 12(5): 773-780.
[6] CHEN Wei, ZHAI Hong, YANG Yuan-jun, HE Shao-zhen, LIU De-gao , LIU Qing-chang. Identification of Differentially Expressed Genes in Sweetpotato Storage Roots Between Kokei No. 14 and Its Mutant Nongdafu 14 Using PCR-Based cDNA Subtraction[J]. >Journal of Integrative Agriculture, 2013, 12(4): 589-595.
[7] ZHANG Jian-cheng, ZHOU Wen-jing, XU Qiang, TAO Neng-guo, YE Jun-li, GUO Fei, XU Juan, DENG Xiu-xin. Two Lycopene β-Cyclases Genes from Sweet Orange (Citrus sinensis L. Osbeck) Encode Enzymes With Different Functional Efficiency During the Conversion of Lycopene-to-Provitamin A[J]. >Journal of Integrative Agriculture, 2013, 12(10): 1731-1747.
[8] DUAN Hui-kun, ZHU Yan, LI Wen-long, HUA Xue-jun, LIU Yong-xiu, DENG Xin. Comparative Study on the Expression of Genes Involved in Carotenoid and ABA Biosynthetic Pathway in Response to Salt Stress in Tomato[J]. >Journal of Integrative Agriculture, 2012, 12(7): 1093-1102.
[9] Mohd Idrees, Mohd Naeem, Masidur Alam, Tariq Aftab, Nadeem Hashmi, Mohd Masroor Akhtar Khan, Moinuddin , Lalit Varshney. Utilizing the γ-Irradiated Sodium Alginate as a Plant Growth Promoter for Enhancing the Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.[J]. >Journal of Integrative Agriculture, 2011, 10(8): 1213-1221.
No Suggested Reading articles found!