Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2772-2782    DOI: 10.1016/j.jia.2023.04.025
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Light intensity regulates the sexual behaviors of oriental fruit fly Bactrocera dorsalis under laboratory conditions
REN Cong1, ZHANG Jie1, YUAN Jin-xi1, WU Yun-qi-qi-ge1, YAN Shan-chun1#, LIU Wei2#, WANG Gui-rong2
1 Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, P.R.China
2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture/Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

橘小实蝇(Bactrocera dorsalis (Hendel))是柑橘类水果的毁灭性虫害。雌虫在成功交配后将卵产入成熟果实,导致其发霉腐烂失去经济价值,从而严重危害柑橘产业。自然条件下的橘小实蝇交配时间发生于黄昏时段,此时下降的光照强度是诱发其交配的关键条件。本研究首先通过设置0-30000lux共10种光照强度,从而确定何种光强能够明显调控橘小实蝇的交配行为。进一步选择了三种明显调控其行为的光照强度,测试了这些光照强度对雄虫求偶(振翅)及雌虫对性信息素2,3,5-三甲基吡嗪(2,3,5-trimethylpyrazine TMP)趋向性的影响。最后,在实验室中将强光和黑暗条件人工组合,测试其是否可以阻止橘小实蝇的交配,以期待为未来橘小实蝇的行为调控提供理论基础。结果表明,橘小实蝇成虫能在较低光照(<1000lux)正常交配,光强越强其交配数量越低,在光强达到20000lux以上时几乎无交配。较强光强明显减弱并推迟了雄虫的振翅行为与雌虫对TMP的趋向行为,不同的是雄虫在10000lux下仍有一定程度的振翅,而雌虫在此光强下对TMP几乎无趋向行为。成虫在无光情况下无交配行为,在此过程中雄虫无振翅行为而雌虫则对TMP失去趋向行为。进一步模拟不利光照条件,在强光10000lux一小时后持续无光,橘小实蝇成虫不进行交配。因此,光照条件是对橘小实蝇求偶交配的重要条件,未来可通过人工改变光强或其他手段干扰橘小实蝇成虫感弱光的分子靶标调控其求偶交配行为,从而开发新型绿色的橘小实蝇防控技术。



Abstract  

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a devastating pest of citrus fruits.  After successful mating, adult females insert their eggs into the ripened fruit, resulting in moldy and rotten fruit and causing great economic losses for the citrus industry.  In the field, flies initiate copulatory behaviors as twilight approaches, and decreasing light intensity in this period is the normal stimulus for copulation.  In this study, ten light intensities ranging from 0–30 000 lux were set to identify the typical intensity that strongly regulates the copulation behavior of Bdorsalis.  Three light intensities found to regulate the copulation behavior were then selected to verify their effects on adult male wing fanning and female chemotaxis towards 2,3,5-trimethylpyrazine (TMP).  At last, strong light and complete darkness were artificially combined in the lab to verify whether they could prevent copulation to inform behavioral manipulation of oriental flies in the future.  The results indicated that adult flies generally initiated copulatory behaviors at low light intensity (<1 000 lux).  
Stronger light significantly prevented copulation in proportion to intensity, with nearly no copulation events initiated when light intensity was above 20 000 lux.  Both male wing fanning and female chemotaxis towards TMP were attenuated as light intensity became stronger.  However, at 10 000 lux, males still fanned their wings to a certain extent while TMP completely lost its attractiveness to females.  In the darkness, adults did not initiate any sexual behaviors, e.g., copulation, wing fanning, or chemotaxis to TMP.  One hour of strong light (10 000 lux) combined with continuous darkness completely prevented mating.  These results show that light condition is an essential factor for copulatory behaviors in the oriental fruit fly.  Researchers could thus manipulate light conditions artificially or disrupt the molecular target in flies’ light transduction pathway to develop environmentally-friendly techniques to control this pest.

Keywords:  Bactrocera dorsalis        light conditions        courtship and mating        2,3,5-trimethylpyrazine  
Received: 21 October 2022   Accepted: 01 February 2023
Fund: 

This work was supported by the Shenzhen Science and Technology Program, China (KQTD20180411143628272)and the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District, China (PT202101-02).

About author:  REN Cong, E-mail: 1193514519@qq.com; #Correspondence YAN Shan-chun, E-mail: yanshanchun@126.com; LIU Wei, E-mail: liuwei11@caas.cn

Cite this article: 

REN Cong, ZHANG Jie, YUAN Jin-xi, WU Yun-qi-qi-ge, YAN Shan-chun, LIU Wei, WANG Gui-rong. 2023. Light intensity regulates the sexual behaviors of oriental fruit fly Bactrocera dorsalis under laboratory conditions. Journal of Integrative Agriculture, 22(9): 2772-2782.

Arakaki N, Kuba H, Soemori H. 1984. Mating behavior of the oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae). Applied Entomology and Zoology19, 42–51.

Arakaki N, Sadoyama Y, Kishita M, Nagayama A, Oyafuso A, Ishimine M, Ota M, Akino T, Fukaya M, Hirai Y, Yamamura K, Wakamura S. 2004. Mating behavior of the scarab beetle Dasylepida ishigakiensis (Coleoptera: Scarabaeidae). Applied Entomology and Zoology39, 669–674.

Auer T O, Benton R. 2016. Sexual circuitry in DrosophilaCurrent Opinion in Neurobiology38, 18–26.

Benelli G, Canale A, Bonsignori G, Ragni G, Stefanini C, Raspi A. 2012. Male wing vibration in the mating behavior of the olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). Journal of Insect Behavior25, 590–603.

Benelli G, Daane K M, Canale A, Niu C Y, Messing R H, Vargas R I. 2014. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for integrated pest management. Journal of Pest Science87, 385–405.

Benhamou S. 2014. Of scales and stationarity in animal movements. Ecology letters17, 261–272.

Briceño D, Eberhard W, Vilardi J, Cayol J P, Shelly T. 2007. Courtship behavior of different wild strains of Ceratitis capitata (Diptera: Tephritidae). Florida Entomologist90, 15–18.

Briceño R D, Eberhard W G. 2000. Male wing positions during courtship by Mediterranean fruit flies (Ceratitis capitata) (Diptera: Tephritidae). Journal of the Kansas Entomological Society73,143–147.

Briceño R D, Eberhard W G. 2002. Courtship in the medfly, Ceratitis capitata, includes tactile stimulation with the male’s aristae. Entomologia Experimentalis et Applicata102, 221–228.

Briceño R D, Eberhard W G, Vilardi J C, Liedo P, Shelly T E. 2002. Variation in the intermittent buzzing songs of male medflies (Diptera: Tephritidae) associated with geography, mass-rearing, and courtship success. Florida Entomologist85, 32–40.

Chou W H, Hall K J, Wilson D B, Wideman C L, Townson S M, Chadwell L V, Britt S G. 1996. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron17, 1101–1115.

Christenson L D, Richard H F. 1960. Biology of fruit flies. Annual Review of Entomology5, 171–192.

Fang X J, Yan Z H, Zhang J L, Zhu W L, Zhang H, Yue R, Jiang X L, Wu H, Chen G H, Tao M. 2017. Oviposition damage characteristics and population dynamics of Bactrocera dorsalis adults on different fruits. Journal of Yunnan Agricultural University (Natural Science Edition), 32, 212–217. (in Chinese)

Firebaugh A, Haynes K J. 2016. Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia182, 1203–1211.

Hardie R C. 1985. Functional organization of the fly retina. In: Progress in Sensory Physiology. Autrum, Ottoson, Per, Schmidt, Shimazu & Willis, Springer-Verlag Berlin Heidelberg, Berlin. pp. 1–79.

Hardie R C, Juusola M. 2015. Phototransduction in DrosophilaCurrent Opinion in Neurobiology34, 37–45.

Huber A, Schulz S, Bentrop J, Groell C, Wolfrum U, Paulsen R. 1997. Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells. FEBS Letters406, 6–10.

Kanmiya K, Nakagawa K, Tanaka A, Kamiwada H. 1987a. Comparison of acoustic properties of tethered flight sounds for wild, mass-reared, and irradiated melon flies, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Applied Entomology and Zoology, 22, 85–97.

Kanmiya K, Nakagawa K, Tanaka A, Kamiwada H. 1987b. Selection of effective ages and parameters for qualitative discrimination between wild, mass-reared, and irradiated strains through comparison of tethered flight sounds of the melon flies, Dacus cucurbitae Coquillett: (Diptera: Tephritidae). Applied Entomology and Zoology22, 316–324.

Kanmiya K, Tanaka A, Kamiwada H, Nakagawa K, Nishioka T. 1987c. Time-domain analysis of the male courtship songs produced by wild, mass-reared, and by irradiated melon flies, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Applied Entomology and Zoology22, 181–194.

Kanmiya K. 1988. Acoustic studies on the mechanism of sound production in the mating songs of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Journal of Ethology6,143–151.

Kanno H. 1980. Mating behavior of the rice stem borer moth, Chilo suppressalis walker (Lepidoptera: Pyralidae): IV. Threshold-light-intensity for mating initiation under various temperatures. Applied Entomology and Zoology15, 372–377.

Kobayashi R M, Ohinata K, Chambers D L, Fujimoto M S. 1978. Sex pheromones of the oriental fruit fly and the melon fly: mating behavior, bioassay method, and attraction of females by live males and by suspected pheromone glands of males. Environmental Entomology7, 107–112.

Li X, Jia X, Xiang H, Diao H, Yan Y, Wang Y, Ma R. 2019. The effect of photoperiods and light intensity on mating behavior and reproduction of Grapholita molesta (Lepidoptera: Tortricidae). Environmental Entomology48, 1035–1041.

Montell C. 2012. Drosophila visual transduction. Trends in Neurosciences35, 356–363.

Montell C. 2021. Drosophila sensory receptors - a set of molecular Swiss Army Knives. Genetics217, 1–34.

Montell C, Jones K, Zuker C, Rubin G. 1987. A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogasterJournal of Neuroscience7, 1558–1566.

O’Tousa J E, Baehr W, Martin R L, Hirsh J, Pak W L, Applebury M L. 1985. The Drosophila ninaE gene encodes an opsin. Cell40, 839–850.

Owen S N. 2008. Effects of temporal variability in resources on foraging behaviour. In: Resource Ecology. Prins & Langevelde (Springer Dordrecht), Dutch. pp. 159–181.

Pak W L. 2010. Why Drosophila to study phototransduction? Journal of Neurogenetics24, 55–66.

Pak W L, Shino S, Leung H T. 2012. PDA (prolonged depolarizing afterpotential)-defective mutants: The story of nina’s and nina’s-pinta and santa maria, Too. Journal of Neurogenetics26, 216–237.

Pan Y. 2016. A study on the effect of Bactrocera dorsalis (Hendel) on food sugar content. MSc thesis, South China Agricultural University, China. (in Chinese)

Papatsenko D, Sheng G, Desplan C. 1997. A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. Development124, 1665–1673.

Poramarcom R. 1988. Sexual communication in the oriental fruit fly, Dacus dorsalis hendel (Diptera: Tephritidae). Ph D thesis, University of Hawaii, Honolulu, HI, USA.

Poramarcom R, Boake C R. 1991. Behavioural influences on male mating success in the oriental fruit fly, Dacus dorsalis hendel. Animal Behaviour42, 453–460.

Prokopy R J, Bennett E W, Bush G L. 1972. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae): II. Temporal organization. The Canadian Entomologist104, 97–104.

Reisenman C E, Figueiras A N L, Giurfa M, Lazzari C R. 2000. Interaction of visual and olfactory cues in the aggregation behaviour of the haematophagous bug Triatoma infestansJournal of Comparative Physiology (A), 186, 961–968.

Ren L, Ma Y, Xie M, Lu Y, Cheng D. 2021. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Current Biology31, 2220–2226.

Roan C C, Flitters N E, Davis C J. 1954. Light intensity and temperature as factors limiting the mating of the oriental fruit fly. Annals of the Entomological Society of America47, 593–594.

Rolli K.1976. Die akustischen sexualsignale von ceratitis capitata wied. und Dacus oleae gmel. Zeitschrift für Angewandte Entomologie81, 219–223. (in German)

Russart K L G, Nelson R J. 2018. Artificial light at night alters behavior in laboratory and wild animals. Journal of Experimental Zoology (Part A: Ecological and Integrative Physiology), 329, 401–408.

Salcedo E, Huber A, Henrich S, Chadwell L V, Chou W H, Paulsen R, Britt S G. 1999. Blue-and green-absorbing visual pigments of Drosophila: Ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. Journal of Neuroscience19, 10716–10726.

San Alberto D, Rusch C, Zhan Y, Straw A D, Montell C, Riffell J A. 2022. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nature Communications13, 1–14.

Shelly T, Epsky N, Jang E B, Reyes-Flores J, Vargas R (eds). 2014. Trapping and the Detection, Control, and Regulation of Tephritid Fruit FliesLuresArea-Wide Programs, and Trade Implications. Springer, USA.

Shimoda M, Honda K. 2013. Insect reactions to light and its applications to pest management. Applied Entomology and Zoology48, 413–421.

Smith D C, Prokopy R J. 1982. Mating behavior of Rhagoletis mendax (Diptera: Tephritidae) flies in nature. Annals of the Entomological Society of America75, 388–392.

Vinauger C, Van Breugel F, Locke L T, Tobin K K, Dickinson M H, Fairhall A L, Akbari O S, Riffell J A. 2019. Visual-olfactory integration in the human disease vector mosquito Aedes aegyptiCurrent Biology29, 2509–2516.

Wang G, Vega-Rodríguez J, Diabate A, Liu J, Cui C, Nignan C, Dong L, Li F, Ouedrago C O, Bandaogo A M, Sawadogo S P, Maiga H, Silva T L A, Pascini T V, Wang S, Jacobs-Lorena M. 2021. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science371, 411–415.

Weaver R E. 2011. Effects of simulated moonlight on activity in the desert nightsnake (Hypsiglena chlorophaea). Northwest Science85, 497–500.

Webb J C, Sivinski J, Litzkow C. 1984. Acoustical behavior and sexual success in the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae). Environmental Entomology13, 650–656.

Xiao J, Chen Q D, Liu H L, Yang Y L, Li C, Liu X. 2019. Harmful characteristics and control countermeasures of Bactrocera dorsalis (Hendel) in Mango Garden in Panxi Region. Sichuan Agricultural Science and Technology5, 30–31. (in Chinese)

Zuker C S, Cowman A F, Rubin G M. 1985. Isolation and structure of a rhodopsin gene from DmelanogasterCell40, 851–858.

Zuker C S, Mismer D, Hardy R, Rubin G M. 1988. Ectopic expression of a minor Drosophila opsin in the major photoreceptor cell class: Distinguishing the role of primary receptor and cellular context. Cell53, 475–482.

Zuker C S, Montell C, Jones K, Laverty T, Rubin G M. 1987. A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. Journal of Neuroscience7, 1550–1557.

No related articles found!
No Suggested Reading articles found!