Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1308-1323    DOI: 10.1016/j.jia.2022.08.031
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic

ZHAO Hai-liang, QIN Yao, XIAO Zi-yi, SUN Qin, GONG Dian-ming#, QIU Fa-zhan#

National Key Laboratory of Crop Genetic Improvement/Hubei Hongshan Laboratory/College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

优质蛋白玉米(QPM)胚乳比普通玉米胚乳含有更高比例的赖氨酸、色氨酸和蛋氨酸等必须氨基酸,因此极大的提高了玉米的营养品质但是由于QPM中储藏蛋白再平衡的机制有待完善从而阻碍了QPM的育种进程本研究使用蛋白质组和转录组技术对opaque2 (o2)  QPM中储藏蛋白再平衡的过程进行探究。 Mo17o2  QPM 中同时鉴定到差异表达蛋白(DEP)的编码基因显著富集在与储藏蛋白、淀粉和氨基酸合成相关的通路中,表明相关通路在储藏蛋白再平衡的过程中发挥作用同时发现在这些DEP中有 178 前人报道过的非醇溶蛋白类型的储藏蛋白,上调表达的非醇溶蛋白富含赖氨酸、色氨酸和蛋氨酸,从而提高了QPM的蛋白品质。利用共表达网络分析筛选一些 QPM 起调控储藏蛋白合成作用的调控因子,这其中包括前人已经证实过的储藏蛋白的关键调控因子如 O2PBF1 以及一些新发现的转录因子。研究鉴定到一些在 QPM 中上调表达的富含赖氨酸、色氨酸和蛋氨酸的非醇溶蛋白及其调控因子,该结果不仅有助于阐明QPM中蛋白品质提高的原因,揭示QPM储藏蛋白再平衡的发生过程也可为QPM的改良提供基因资源和理论指导


Quality protein maize (QPM) (Zea mays L.) varieties contain enhanced levels of tryptophan and lysine, exhibiting improved nutritive value for humans and livestock.  However, breeding QPM varieties remains challenging due to the complex process of rebalancing storage protein.  This study conducted transcriptome and proteome analyses to investigate the process of storage proteins rebalancing in opaque2 (o2) and QPM.  We found a weak correlation between the transcriptome and proteome, suggesting a significant modulating effect of post-transcriptional events on non-zein protein abundances in Mo17o2 and QPM.  These results highlight the advantages of proteomics.  Compared with Mo17, 672 differentially expressed proteins (DEPs) were identified both in Mo17o2 and QPM, and several of them were associated with storage protein, starch, and amino acid synthesis.  We identified 178 non-zeins as DEPs in Mo17o2 and QPM kernels.  The up-regulated non-zein DEPs were enriched in lysine, tryptophan, and methionine, which affected the protein quality.  Co-expression network analysis identified regulators of storage protein synthesis in QPM, including O2, PBF1, and several transcription factors.  Our results revealed how storage protein rebalancing occurs and identified non-zein DEPs that may facilitate superior-quality QPM breeding. 

Keywords:  quality protein maize       opaque2        qγ27       protein body       storage protein       iTRAQ
Received: 10 March 2022   Accepted: 29 April 2022

This work was supported by the National Natural Science Foundation of China (31971951 and 31771796).  

About author:  ZHAO Hai-liang, E-mail:; #Correspondence QIU Fa-zhan, Tel: +86-27-87286870, E-mail:; GONG Dian-ming, E-mail:

Cite this article: 

ZHAO Hai-liang, QIN Yao, XIAO Zi-yi, SUN Qin, GONG Dian-ming, QIU Fa-zhan. 2023. Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic. Journal of Integrative Agriculture, 22(5): 1308-1323.

Babu R, Nair S K, Kumar A, Venkatesh S, Sekhar J C, Singh N N, Srinivasan G, Gupta H S. 2005. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theoretical and Applied Genetics, 111, 888–897.
Beatty M K, Rahman A, Cao H, Woodman W, Lee M, Myers A M, James M G. 1999. Purification and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching enzyme from maize. Plant Physiology, 119, 255–266.
Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J. 2014. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology, 166, 252–264.
Feng Z M, Gao P, Zhao J H, Wang G D, Zhang H M, Cao W L, Xue X, Zhang Y F, Ma Y Y, Hua R, Chen Z X, Chen X J, Hu K M, Zuo S M. 2022. iTRAQ-based quantitative proteomics analysis of defense responses triggered by the pathogen Rhizoctonia solani infection in rice. Journal of Integrative Agriculture, 21, 139–152.
Flint-Garcia S A, Bodnar A L, Scott M P. 2009. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theoretical and Applied Genetics, 119, 1129–1142.
Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, et al. 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4, 2832.
Geetha K B, Lending C R, Lopes M A, Wallace J C, Larkins B A. 1991. Opaque-2 modifiers increase gamma-zein synthesis and alter its spatial distribution in maize endosperm. Plant Cell, 3, 1207–1219.
Gibbon B C, Larkins B A. 2005. Molecular genetic approaches to developing quality protein maize. Trends in Genetics, 21, 227–233.
Guo X, Yuan L, Chen H, Sato S J, Clemente T E, Holding D R. 2013. Nonredundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm. Plant Physiology, 162, 1359–1369.
Gupta H O, Lodha M L, Mehta S L, Rastogi D K, Singh J. 1979. Effect of amino acid(s) and pulse supplementation on nutritional quality of normal and modified opaque-2 maize (Zea mays L.). Journal of Agricultural and Food Chemistry, 27, 787–790.
He M, Li X, Mang M, Li Z, Ludewig U, Schulze W X. 2021. A systems-biology approach identifies co-expression modules in response to low phosphate supply in maize lines of different breeding history. Plant Journal, 109, 1249–1270.
Holding D R, Otegui M S, Li B, Meeley R B, Dam T, Hunter B G, Jung R, Larkins B A. 2007. The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell, 19, 2569–2582.
Huang S, Adams W R, Zhou Q, Malloy K P, Voyles D A, Anthony J, Kriz A L, Luethy M H. 2004. Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. Journal of Agricultural and Food Chemistry, 52, 1958–1964.
Jiao Y, Peluso P, Shi J, Liang T, Stitzer M C, Wang B, Campbell M S, Stein J C, Wei X, Chin C S, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider K L, Wolfgruber T K, May M R, Springer N M, Antoniou E, et al. 2017. Improved maize reference genome with single-molecule technologies. Nature, 546, 524–527.
Kawakatsu T, Takaiwa F. 2010. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant & Cell Physiology, 51, 1964–1974.
Kemper E L, Neto G C, Papes F, Moraes K C, Leite A, Arruda P. 1999. The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell, 11, 1981–1994.
Kies C, Fox H M. 1972. Protein nutritional value of opaque-2 corn grain for human adults. Journal of Nutrition, 102, 757–765.
Kumar D, Bansal G, Narang A, Basak T, Abbas T, Dash D. 2016. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics, 16, 2533–2544.
Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lv Y, Zhao H, Xiao H, Song R. 2015. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. Plant Cell, 27, 532–545.
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton M L, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.
Li Q, Wang J, Ye J, Zheng X, Xiang X, Li C, Fu M, Wang Q, Zhang Z, Wu Y. 2017. The maize imprinted gene floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 29, 2661–2675.
Li X, Jiang Y, Ma L, Ma X, Liu Y, Shan J, Ma K, Xing F. 2020. Comprehensive transcriptome and proteome analyses reveal the modulation of aflatoxin production by aspergillus flavus on different crop substrates. Frontiers in Microbiology, 11, 1497.
Liu H, Huang Y, Li X, Wang H, Ding Y, Kang C, Sun M, Li F, Wang J, Deng Y, Yang X, Huang X, Gao X, Yuan L, An D, Wang W, Holding D R, Wu Y. 2019. High frequency DNA rearrangement at qgamma27 creates a novel allele for Quality Protein Maize breeding. Communications Biology, 2, 460.
Liu H, Shi J, Sun C, Gong H, Fan X, Qiu F, Huang X, Feng Q, Zheng X, Yuan N, Li C, Zhang Z, Deng Y, Wang J, Pan G, Han B, Lai J, Wu Y. 2016. Gene duplication confers enhanced expression of 27-kDa gamma-zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America, 113, 4964–4969.
Mertz E T, Bates L S, Nelson O E. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 145, 279–280.
Morton K J, Jia S, Zhang C, Holding D R. 2016. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins. Journal of Experimental Botany, 67, 1381–1396.
Myers A M, James M G, Lin Q, Yi G, Stinard P S, Hennen-Bierwagen T A, Becraft P W. 2011. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell, 23, 2331–2347.
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667.
Rosales A, Galicia L, Oviedo E, Islas C, Palacios-Rojas N. 2011. Near-infrared reflectance spectroscopy (NIRS) for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. Journal of Agricultural and Food Chemistry, 59, 10781–10786.
Shewry P R, Halford N G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53, 947–958.
Stuart J M, Segal E, Koller D, Kim S K. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science, 302, 249–255.
Tang B, Liu C, Li Z, Zhang X, Zhou S, Wang G L, Chen X L, Liu W. 2021. Multilayer regulatory landscape during pattern-triggered immunity in rice. Plant Biotechnology Journal, 19, 2629–2645.
Wang G, Qi W, Wu Q, Yao D, Zhang J, Zhu J, Wang G, Wang G, Tang Y, Song R. 2014a. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiology, 165, 582–594.
Wang G, Wang G, Wang J, Du Y, Yao D, Shuai B, Han L, Tang Y, Song R. 2016. Comprehensive proteomic analysis of developing protein bodies in maize (Zea mays) endosperm provides novel insights into its biogenesis. Journal of Experimental Botany, 67, 6323–6335.
Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H, Xu N, Zhong M, Qiao Z, Tang Y, Song R. 2014b. Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. Plant Cell, 26, 2582–2600.
Wang J F, Geil P H, Kolling D R, Padua G W. 2003. Analysis of zein by matrix-assisted laser desorption/ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 51, 5849–5854.
Woo Y M, Hu D W, Larkins B A, Jung R. 2001. Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell, 13, 2297–2317.
Wu Y, Holding D R, Messing J. 2010. Gamma-zeins are essential for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America, 107, 12810–12815.
Yuan L, Dou Y, Kianian S F, Zhang C, Holding D R. 2014. Deletion mutagenesis identifies A haplo in sufficient role for gamma-zein in opaque2 endosperm modification. Plant Physiology, 164, 119–130.
Zarkadas C G, Hamilton R I, Yu Z R, Choi V K, Khanizadeh S, Rose N G, Pattison P L. 2000. Assessment of the protein quality of 15 new northern adapted cultivars of quality protein maize using amino acid analysis. Journal of Agricultural and Food Chemistry, 48, 5351–5361.
Zhan J, Li G, Ryu C H, Ma C, Zhang S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X, Yadegari R. 2018. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell, 30, 2425–2446.
Zhang Y, Luo S W, Hou L E, Gu T T, Zhu G Q, Vongsangnak W, Xu Q, Chen G H. 2022. Weighted gene co-expression network analysis identifies potential regulators in response to Salmonella enteritidis challenge in the reproductive tract of laying ducks. Journal of Integrative Agriculture, 21, 2384–2398.
Zhang Z, Deng Y, Zhang W, Wu Y, Messing J. 2020. Towards coeliac-safe bread. Plant Biotechnology Journal, 18, 1056–1065.
Zhang Z, Zheng X, Yang J, Messing J, Wu Y. 2016. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proceedings of the National Academy of Sciences of the United States of America, 113, 10842–10847.

[1] LIU Da-tong, ZHANG Xiao, JIANG Wei, LI Man, WU Xu-jiang, GAO De-rong, BIE Tong-de, LU Cheng-bin. Influence of high-molecular-weight glutenin subunit deletions at the Glu-A1 and Glu-D1 loci on protein body development, protein components and dough properties of wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1867-1876.
[2] Seong-Woo Cho, Chon-Sik Kang, Hyeon Seok Ko, Byung-Kee Baik, Kwang-Min Cho, Chul Soo Park. Influence of protein characteristics and the proportion of gluten on end-use quality in Korean wheat cultivars[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1706-1719.
[3] YU Yang, HOU Wen-sheng, Yael Hacham, SUN Shi, WU Cun-xiang, Ifat Matityahu, SONG Shi-kui, Rachel Amir, HAN Tian-fu. Constitutive expression of feedback-insensitive cystathionine γ-synthase increases methionine levels in soybean leaves and seeds[J]. >Journal of Integrative Agriculture, 2018, 17(01): 54-62.
[4] CHAI Jian-fang, ZHANG Cui-mian, MA Xiu-ying, WANG Hai-bo. Molecular identification of ω-secalin gene expression activity in a wheat 1B/1R translocation cultivar[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2712-2718.
[5] WANG Jun, LIU Lin, GUO Yong, WANG Yong-hui, ZHANG Le, JIN Long-guo, GUAN Rong-xia, LIU Zhang-xiong, WANG Lin-lin, CHANG Ru-zhen , QIU Li-juan. A Dominant Locus, qBSC-1, Controls β Subunit Content of Seed Storage Protein in Soybean (Glycine max (L.) Merri.)[J]. >Journal of Integrative Agriculture, 2014, 13(9): 1854-1864.
No Suggested Reading articles found!