Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2876-2887    DOI: 10.1016/j.jia.2022.07.052
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Comprehensive analysis of YABBY gene family in foxtail millet (Setaria italica) and functional characterization of SiDL
GUO Jie1, ZHOU Xu-tao1, DAI Ke-li1, YUAN Xiang-yang1, GUO Ping-yi1, SHI Wei-ping1, ZHOU Mei-xue1, 2

1 College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, P.R.China

2 Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7250, Australia

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  YABBY基因是植物种特有的一类转录因子,它在植物生长和发育中发挥着重要作用。为研究YABBY基因在植物抗逆性中的功能,我们分析了谷子(Setaria italicaYABBY基因家族及它们在植物生长和响应不同非生物胁迫的功能。研究结果发现,8YABBY基因不均等分布在五条染色体上,它们与其他单子叶植物YABBY基因具有很好的共线性关系。系统发育进化关系将SiYAB划分为四个亚组:FIL/YAB3, YAB2, INOCRC。其中没有单子叶植物YABBY成员被划入YAB5亚组。 此外,在SiYAB蛋白发现四个保守基序,基序1构成YABBY结构域,而基序23构成C2-C2结构域。表达模式分析发现SiYAB基因在生殖发育组织中高表达。为进一步研究SiYAB基因的功能,选择SiDL基因在拟南芥中进行异源表达。SiDL在拟南芥中的过量表达会导致植物开花延迟、叶片卷曲和种子大小发生改变。 此外,SiDL在植物种负向调控对盐胁迫的响应。我们的研究为进一步研究谷子YABBY基因功能提供了基础。

Abstract  

YABBY genes are plant-specific transcription factors (TF) that function in plant growth and development.  To investigate the functions of the YABBY genes in plants’ stress tolerance, we analyzed the YABBY genes in foxtail millet (Setaria italica) and investigated their functions on plant growth and responses to different stresses.  Eight YABBY genes were identified on five chromosomes. These genes showed strong relationships with YABBY genes in other monocot species.  Phylogenetical SiYABs were classified into four clades: FIL/YAB3, YAB2, INO, and CRC.  No monocot YABBY member was classified into the YAB5 clade.  Four conserved motifs were identified and motif 1 constituted the YABBY domain, whereas motifs 2 and 3 formed the C2-C2 region. SiYAB genes were highly expressed in reproductive tissues.  Among all the SiYABs, SiDL was selected to be overexpressed in Arabidopsis thaliana to check the functions of the YABBY genes.  Overexpression of SiDL in Arabidopsis thaliana caused delayed flowering, leaf curling, and reduced seed size.  In addition, SiDL acted as a negative regulator in plant response to salt stress. Our study provides information to assist the study of YABBY gene function in S. italica.

Keywords:  DROOPING LEAF (DL)       plant development       foxtail mille  
Received: 13 February 2022   Accepted: 12 April 2022
Fund: 

This work was supported by grants from the National Key R&D Program of China (2021YFD1901101), the Key Science and Technology Program of Shanxi Province, China (20210140601026) and the Project of Biological Breeding of Shanxi Agricultural University, China (YZGC102).  

About author:  GUO Jie, E-mail: nxgj1115326@sxau.edu.cn; Correspondence SHI Wei-ping, Mobile: +86-18935469769, E-mail: shiwei968@sxau.edu.cn; ZHOU Mei-xue, E-mail: meixue.zhou@utas.edu.au

Cite this article: 

GUO Jie, ZHOU Xu-tao, DAI Ke-li, YUAN Xiang-yang, GUO Ping-yi, SHI Wei-ping, ZHOU Mei-xue. 2022. Comprehensive analysis of YABBY gene family in foxtail millet (Setaria italica) and functional characterization of SiDL. Journal of Integrative Agriculture, 21(10): 2876-2887.

Bailey T L, Johnson J, Grant C E, Noble W S. 2015. The MEME suite. Nucleic Acids Research, 43, W39–W49. 
Bonaccorso O, Lee J E, Puah L, Scutt C P, Golz J F. 2012. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biology, 12, 176. 
Boter M, Golz J F, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla J M, Solano R. 2015. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate. The Plant Cell, 27, 3160–3174. 
Bowman J L, Smyth D R. 1999. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 126, 2387–2396. 
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202. 
Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743. 
Gross T, Broholm S, Becker A. 2018. CRABS CLAW acts as a bifunctional transcription factor in flower development. Frontiers in Plant Science, 9, 835. 
Hao L, Zhang J, Shi S, Li P, Li D, Zhang T, Guo H. 2022. Identification and expression profiles of the YABBY transcription factors in wheat. PeerJ, 10, e12855. 
Hou H, Lin Y, Hou X. 2020. Ectopic expression of a Pak-choi YABBY gene, BcYAB3, causes leaf curvature and flowering stage delay in Arabidopsis thaliana. Genes (Basel), 11, 370.
Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31, 1296–1297. 
İnal B, Büyük İ, İlhan E, Aras S. 2017. Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress conditions. 3 Biotech, 7, doi: 10.1007/s13205-017-0933-0. 
Jang S, Hur J, Kim S J, Han M J, Kim S R, An G. 2004. Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Molecular Biology, 56, 133–143. 
Jiu S, Zhang Y, Han P, Han Y, Xu Y, Liu G, Leng X. 2021. Genome-wide identification and expression analysis of VviYABs family reveal its potential functions in the developmental switch and stresses response during grapevine development. Frontiers in Genetics, 12, 762221. 
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. 
Letunic I, Khedkar S, Bork P. 2020. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Research, 49, D458–D460. 
Li Z, Li G, Cai M, Priyadarshani S, Aslam M, Zhou Q, Huang X, Wang X, Liu Y, Qin Y. 2019. Genome-wide analysis of the YABBY transcription factor family in pineapple and functional identification of AcYABBY4 involvement in salt stress. International Journal of Molecular Sciences, 20, doi: 10.3390/ijms20235863.
Liu H L, Xu Y Y, Xu Z H, Chong K. 2007. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Development Genes and Evolution, 217, 629–637. 
Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H Y. 2011. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. The Plant Journal, 65, 77–86.
Procter J B, Carstairs G M, Soares B, Mourão K, Ofoegbu T C, Barton D, Lui L, Menard A, Sherstnev N, Roldan-Martinez D, Duce S, Martin D M A, Barton G J. 2021. Alignment of biological sequences with Jalview. Methods in Molecular Biology, 2231, 203–224. 
Rueden C T, Schindelin J, Hiner M C, DeZonia B E, Walter A E, Arena E T, Eliceiri K W. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18, doi: 10.1186/s12859-017-1934-z.
Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 126, 4117–4128. 
Strable J, Vollbrecht E. 2019. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy. Development, 146, doi: 10.1242/dev.171181. 
Subramanian B, Gao S, Lercher M J, Hu S, Chen W H. 2019. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research, 47, W270–W275. 
Tang F, Zhang D, Chen N Z, Peng X J, Shen S H. 2022. Genome-wide analysis of BpYABs and function identification involving in the leaf and silique development in transgenic Arabidopsis. International Journal of Molecular Sciences, 23, doi: 10.3390/ijms23031670. 
Thompson J D, Gibson T J, Higgins D G. 2002. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics. Chapter 2, Unit 2.3. Wiley Online Library, Cotton Research Institute, USA. 
Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano H Y. 2007. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Molecular Genetics and Genomics, 277, 457–468. 
Villanueva J M, Broadhvest J, Hauser B A, Meister R J, Schneitz K, Gasser C S. 1999. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes & Development, 13, 3160–3169. 
Wang Q H, Yang Z J, Wei S H, Jiang Z Y, Yang Y F, Hu Z S, Sun Q X, Peng Z S. 2015. Molecular cloning, characterization and expression analysis of WAG–1 in the pistillody line of common wheat. Genetics and Molecular Research, 14, 12455–12465. 
Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T H, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49. 
Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 112, 531–552.
Xia J, Wang D, Peng Y, Wang W, Wang Q, Xu Y, Li T, Zhang K, Li J, Xu X. 2021. Genome-wide analysis of the YABBY transcription factor family in rapeseed (Brassica napus L.). Genes (Basel), 12, doi: 10.3390/genes12070981.
Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y. 2004. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. The Plant Cell, 16, 500–509. 
Yang H, Shi G, Li X, Hu D, Cui Y, Hou J, Yu D, Huang F. 2019. Overexpression of a soybean YABBY gene, GmFILa, causes leaf curling in Arabidopsis thaliana. BMC Plant Biology, 19, 234. 
Yang Z, Gong Q, Wang L, Jin Y, Xi J, Li Z, Qin W, Yang Z, Lu L, Chen Q, Li F. 2018. Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Frontiers in Genetics, 9, doi: 10.3389/fgene.2018.00033. 
Yu C S, Chen Y C, Lu C H, Hwang J K. 2006. Prediction of protein subcellular localization. Proteins, 64, 643–651. 
Zhang S, Wang L, Sun X, Li Y, Yao J, van Nocker S, Wang X. 2019. Genome-wide analysis of the YABBY gene family in grapevine and functional characterization of VvYABBY4. Frontiers in Plant Science, 10, doi: 10.3389/fpls.2019.01207. 
Zhang X L, Yang Z P, Zhang J, Zhang L G. 2013. Ectopic expression of BraYAB1–702, a member of YABBY gene family in Chinese cabbage, causes leaf curling, inhibition of development of shoot apical meristem and flowering stage delaying in Arabidopsis thaliana. International Journal of Molecular Sciences, 14, 14872–14891. 
Zhao S P, Lu D, Yu T F, Ji Y J, Zheng W J, Zhang S X, Chai S C, Chen Z Y, Cui X Y. 2017. Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiology and Biochemistry, 119, 132–146. 
Zhao W, Su H Y, Song J, Zhao X Y, Zhang X S. 2006. Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis. Plant Science, 170, 364–371. 
[1] LI Zhi-jiang, JIA Guan-qing, LI Xiang-yu, LI Yi-chu, ZHI Hui, TANG Sha, MA Jin-feng, ZHANG Shuo, LI Yan-dong, SHANG Zhong-lin, DIAO Xian-min. Identification of blast-resistance loci through genome-wide association analysis in foxtail millet (Setaria italica (L.) Beauv.)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2056-2064.
[2] XU Bing-qin, GAO Xiao-li, GAO Jin-feng, LI Jing, YANG Pu, FENG Bai-li. Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2457-2471.
[3] YANG Yan-bing, JIA Guan-qing, DENG Li-gang, QIN Ling, CHEN Er-ying, CONG Xin-jun, ZOU Renfeng, WANG Hai-lian, ZHANG Hua-wen, LIU Bin, GUAN Yan-an, DIAO Xian-min, YIN Yan-ping. Genetic variation of yellow pigment and its components in foxtail millet (Setaria italica (L.) P. Beauv.) from different eco-regions in China[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2459-2469.
[4] XIE Li-na, CHEN Ming, MIN Dong-hong, FENG Lu, XU Zhao-shi, ZHOU Yong-bin, XU Dong-bei, LI Lian-cheng, MA You-zhi, ZHANG Xiao-hong. The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway[J]. >Journal of Integrative Agriculture, 2017, 16(03): 559-571.
[5] LIU Min-xuan, ZHANG Zong-wen, REN Gui-xing, ZHANG Qi, WANG Yin-yue, LU Ping. Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlations with agronomic performance[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1449-1457.
[6] WANG Jun, WANG Zhi-lan, YANG Hui-qing, YUAN Feng, GUO Er-hu, TIAN Gang, AN Yuan. Genetic Analysis and Preliminary Mapping of a Highly Male-Sterile Gene in Foxtail Millet (Setaria italica L. Beauv.) Using SSR Markers[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2143-2148.
[7] LI Wei, ZHI Hui, WANG Yong-fang, LI Hai-quan , DIAO Xian-min. Assessment of Genetic Relationship of Foxtail Millet with Its Wild Ancestor and Close Relatives by ISSR Markers[J]. >Journal of Integrative Agriculture, 2012, 12(4): 556-566.
No Suggested Reading articles found!