Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2984-2994    DOI: 10.1016/j.jia.2022.07.040
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attraction to the mirid bug Apolygus lucorum
TENG Dong1, LIU Dan-feng2, Khashaveh ADEL1, SUN Pei-yao1, GENG Ting3, ZHANG Da-wei4, ZHANG Yong-jun1
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming 650091, P.R.China
3 Langfang Scientific Research Trial Station, Chinese Academy of Agricultural Sciences, Langfang 065000, P.R.China
4 Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  黄花蒿是绿盲蝽重要的秋季寄主,其释放的挥发物对绿盲蝽具有吸引作用。黄花蒿中的挥发性物质青蒿酸是合成青蒿素的前体物质,在中草药领域被深入研究。迄今为止,关于青蒿酸调控绿盲蝽趋向行为的生物学作用研究鲜有报道。本研究使用顶空固相微萃取(HS-SPME)收集幼苗期黄花蒿的挥发物,通过气相色谱-质谱联用仪(GC-MS)分析,在挥发性样品和研磨样品中检测到的青蒿酸的浓度分别为11.03±6.00 ng h-1和238.25±121.67 ng h-1。随后,在工程酿酒酵母中表达了青蒿酸合成的关键基因细胞色素P450(cyp71av1)加入外源的青蒿醇或青蒿醛为催化底物,工程酿酒酵母能够合成青蒿酸。在触角电位(EAG)测试中,3日龄的绿盲蝽成虫对青蒿醇、青蒿醛和青蒿酸均表现出强烈的电生理反应。行为学试验表明,浓度为10 mmol L-1的青蒿酸和青蒿醇能够显著吸引3日龄的雌性绿盲蝽虫成虫,而10 mmol L-1 青蒿酸和青蒿醛明显吸引3日龄的雄性绿盲蝽虫成虫。 因此, 青蒿酸及其前体物质可作为潜在的绿盲蝽引诱剂组分,用于设计绿盲蝽的综合防治策略。

Abstract  

Artemisia annua is an important preferred host of the mirid bug Apolygus lucorum in autumn.  Volatiles emitted from Aannua attract Alucorum.  Volatile artemisinic acid of Aannua is a precursor of artemisinin that has been widely investigated in the Chinese herbal medicine field.  However, little is known at this point about the biological roles of artemisinic acid in regulating the behavioral trends of Alucorum.  In this study, we collected volatiles from Aannua at the seedling stage by using headspace solid phase microextraction (HS-SPME).  Gas chromatography-mass spectrometry (GC-MS) analysis showed that approximately 11.03±6.00 and 238.25±121.67 ng h–1 artemisinic acid were detected in volatile samples and milled samples, respectively.  Subsequently, a key gene for artemisinic acid synthesis, the cytochrome P450 gene cyp71av1, was expressed in engineered Saccharomyces cerevisiae to catalyze the production of artemisinic acid.  After the addition of exogenous artemisinic alcohol or artemisinic aldehyde, artemisinic acid was identified as the product of the expressed gene.  In electroantennogram (EAG) recordings, 3-day-old adult Alucorum showed significant electrophysiological responses to artemisinic alcohol, artemisinic aldehyde and artemisinic acid.  Furthermore, 3-day-old female bugs were significantly attracted by artemisinic acid and artemisinic alcohol at a concentration of 10 mmol L–1, whereas 3-day-old male bugs were attracted significantly by 10 mmol L–1 artemisinic acid and artemisinic aldehyde.  We propose that artemisinic acid and its precursors could be used as potential attractant components for the design of novel integrated pest management strategies to control Alucorum.

Keywords:  artemisinic acid        CYP71AV1        biosynthesis        Apolygus lucorum        electrophysiological responses       trend behavior  
Received: 16 July 2021   Accepted: 01 November 2021
Fund: This work was supported by the National Natural Science Foundation of China (31772176 and 31972338) and the National Key Research and Development Program of China (2019YFD0300100). 
About author:  TENG Dong, E-mail: tengdongtengdong@163.com; Correspondence ZHANG Yong-jun, Tel: +86-10-62815929, E-mail: yjzhang@ippcaas.cn

Cite this article: 

TENG Dong, LIU Dan-feng, Khashaveh ADEL, SUN Pei-yao, GENG Ting, ZHANG Da-wei, ZHANG Yong-jun. 2022. Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attraction to the mirid bug Apolygus lucorum. Journal of Integrative Agriculture, 21(10): 2984-2994.

Bruce T J A, Wadhams L J, Woodcock C M. 2005. Insect host location: A volatile situation. Trends in Plant Science, 10, 269–274.
Huang X Z, Chen J Y, Xiao H J, Xiao Y T, Wu J, Wu J X, Zhou J J, Zhang Y J, Guo Y Y. 2015. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsuyum in response to the cotton bollworm Helicoverpa armigera. Scientific Reports, 5, 11867.
Judd R, Bagley M C, Li M, Zhu Y, Lei C, Yuzuak S, Ekelof M, Pu G, Zhao X, Mudduman D C, Xie D Y. 2019. Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua. Molecular Plant, 12, 704–714.
Khashaveh A, An X K, Shan S, Xiao Y, Wang Q, Wang S N, Li Z B, Geng T, Gu S H, Zhang Y J. 2020. Deorphanization of an odorant receptor revealed new bioactive components for green mirid bug Apolygus lucorum (Hemiptera: Miridae). Pest Management Science, 76, 1626–1638.
Klein A P, Anarat-Cappillino G, Sattely E S. 2013. Minimum set of cytochromes P450 for reconstituting the biosynthesis of camalexin, a major Arabidopsis antibiotic. Angewandte Chemie International Edition, 52, 13625–13628.
Lee S, Badieyan S, Bevan D R, Herde M, Gatz C, Tholl D. 2010. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 107, 21205–21210.
Levesque F, Seeberger P H. 2012. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angewandte Chemie International Edition, 51, 1706–1709.
Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Russell J K, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Richard G P, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, et al. 2015. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 33, 524–530.
Li Y P, Qin W, Fu X Q, Zhang Yao J, Hassani D, Kayani S I, Xie L H, Liu H, Chen T T, Yan X, Peng B W, Wu Z K Y, Wang C, Sun X F, Li L, Tang K X. 2021. Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L. Plant Physiology and Biochemistry, 163, 189–200.
Liu D F, Huang X Z, Jing W X, An X K, Zhang Q, Zhang H, Zhou J J, Zhang Y J, Guo Y Y. 2018. Identification and functional analysis of two P450 enzymes of Gossypium hirsutum involved in DMNT and TMTT biosynthesis. Plant Biotechnology Journal, 16, 581–590.
Liu H J, Yeh W L. 1996. Total synthesis of (–)-Qinghaosu IV (Artemisinin D, Arteannuin D). Heterocycles, 27, 493–497.
Lu Y H, Qiu F, Feng H Q, Li H B, Yang Z C, Wyckhuys K A G, Wu K M. 2008. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China. Crop Protection, 27, 465–472.
Lu Y H, Wu K M, Jiang Y Y, Xia B, Feng H Q, Wyckhuys K A G, Guo Y Y. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 328, 1151–1154.
Malaquias J B, Santana D R S, Degrande P E, Ferreira C P, de Melo E P, Godoy W A C, Pachú J K D S, de Sousa Ramalho F, Omoto C, de Azevedo Pereira A I, Guazina R A. 2021. Shifts in ecological dominance between two lepidopteran species in refuge areas of Bt cotton. Insects, 12, 12020157.
Mazzi D, Dorn S. 2012. Movement of insect pests in agricultural landscapes. Annals of Applied Biology, 160, 97–113.
Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, McPhee D, Leavell M D, Tai A, Main A, Eng D, Polichuk D R, Teoh K H, Reed D W, Treynor T, Lenihan J, Jiang J, Fleck M, Bajad S, Dang G, Dengrove D, et al. 2013. High level semi-synthetic production of the potent antimalarial artemisinin. Nature Biotechnology, 496, 528–532.
Pan H S, Lu Y H, Wyckhuys K A G, Wu K M. 2017. Preference of a polyphagous mirid bug, Apolygus lucorum (Meyer-Dür) for flowering host plants. PLoS ONE, 8, e68980.
Pan H S, Lu Y H, Wyckhuys K A G. 2018. Early-season host switching in Adelphocoris spp. (Hemiptera: Miridae) of differing host breadth. PLoS ONE, 8, e59000.
Pan H S, Xiu C L, Williams L, Lu Y H. 2021. Plant volatiles modulate seasonal dynamics between hosts of the polyphagous mirid bug Apolygus lucorum. Journal of Chemical Ecology, 47, 87–98.
Pompon D, Louerat B, Bronine A, Urban P. 1996. Yeast expression of animal and plant P450s in optimized redox environments. Methods in Enzymology, 272, 51–64.
Rajana N, Yarbagi K M, Balakumaran K, Madhubabu M V, Mosesbabu J, Basavaiah K, Devi D R. 2019. An orthogonal approach for determination of acetamide content in pharmaceutical drug substance and base-contaminated acetonile by GC and GC-MS external method. Journal of Chromatographic Science, 57, 769–777.
Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C Y, Withers S T, Shiba Y, Sarpong R, Keasling J D. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943.
Schnee C, Kollner T G, Held M, Turlings T C J, Gershenzon J, Degenhardt J. 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceeding of the National Academy of Science of the United States of America, 103, 1129–1134. 
Shen Q, Chen Y F, Wang T, Wu S Y, Lu X, Zhang L, Zhang F Y, Jiang W M, Wang G F, Tang K X. 2012. Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genetics and Molecular Research, 11, 3298–3309.
Shiba Y, Paradise E M, Kirby J, Ro D K, Keasling J D. 2007. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 9, 160–168.
Sun L, Gu S H, Xiao H J, Zhou J J, Guo Y Y, Liu Z W, Zhang Y J. 2013. The preferential binding of a sensory organ specific odorant binding protein of the alfalfa plant bug Adelphocoris lineolatus AlinOBP10 to biologically active host plant volatiles. Journal of Chemical Ecology, 39, 1221–1231.
Tu Y Y. 2011. The discovery of artemisinin (Qinghaosu) and gifts from Chinese medicine. Nature Medicine, 17, 1217–1220.
Weathers P J, Elkholy S, Wobbe K K. 2016. Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cellular & Developmental Biology, 42, 309–317.
Wu K M, Guo Y Y, Lv N, Greenplate J T, Deaton R. 2003. Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China. Journal of Economic Entomology, 96, 1322–1328.
Yin H C, Li W J, Xv M, Xv D, Wan P. 2021. The olfactory responses of mirid bugs to six plant extracts and their volatiles. Journal of Applied Entomology, 145, 125–133.
Zeng B X, Yao M D, Wang Y, Xiao W H, Yuan Y J. 2020. Metabolic engineering of Saccharomyces cerevisiae for enhanced dihydroartemisinic acid production. Frontiers in Bioengineering and Biotechnology, 8, 1–11.

[1] ZHANG Hong, HUANG Xin-zheng, JING Wei-xia, LIU Dan-feng, Khalid Hussain DHILOO, HAO Zhi-min, ZHANG Yong-jun. Two farnesyl pyrophosphate synthases, GhFPS1–2, in Gossypium hirsutum are involved in the biosynthesis of farnesol to attract parasitoid wasps[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2274-2285.
No Suggested Reading articles found!