Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (10): 2696-2705    DOI: 10.1016/S2095-3119(20)63459-1
Special Issue: 植物病理合辑Plant Protection—Plant Pathology 植物病毒合辑Plant Virus
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Combining simplified DNA extraction technology and recombinase polymerase amplification assay for rapid and equipment-free detection of citrus pathogen Phytophthora parasitica
CHEN Wei-yu1*, YU Jia2, 3*, XU Heng2, LU Xin-yu2, DAI Ting-ting4, TIAN Yue-e5, SHEN Dan-yu2, DOU Dao-long2
Nanjing Plant Protection and Quarantine Station, Nanjing 210036, P.R.China
2 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R.China
3 College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, P.R.China
4 College of Forestry, Nanjing Forestry University, Nanjing 210037, P.R.China
5 Department of Plant Protection, Henan University of Science and Technology, Luoyang 471000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由寄生疫霉(Phytophthora parasitica)引起的柑橘根腐病是柑橘生产上普遍发生、对柑橘危害较为严重的一种病害。本研究的目的是建立一种简易快速的结合侧流层析技术判定结果的重组酶聚合酶扩增(lateral flow strip-based recombinase polymerase amplification, LF-RPA)方法检测寄生疫霉,为诊断和防治寄生疫霉引起的柑橘根腐病提供技术支撑。以Ypt1基因为检测的靶标序列,通过多序列比对分析,设计寄生疫霉的特异性引物和探针,建立并优化LF-RPA检测方法,并与简易核酸提取技术相结合,对该检测方法的特异性、灵敏度和实际应用效果进行评估。对LF-RPA体系中的温度、引物和探针比例、时间进行了优化,使得LF-RPA在40°C孵育温度下反应20分钟后即可肉眼判断检测结果。特异性试验中,LF-RPA能特异性地检测出不同来源的寄生疫霉,而其它亲缘关系相近的卵菌病原菌均未检测出。灵敏度试验结果显示,LF-RPA的最低检测灵敏度为1 pg。为了使LF-RPA检测方法更适宜基层使用,对四种不同的简易核酸提取技术进行了比较评估,发现基于PEG-NaOH的简易核酸提取技术更适合本研究。将LF-RPA与PEG-NaOH核酸提取技术相结合,不需要特定的仪器设备,只需要能维持40°C的保温杯,即可在30分钟内完成从发病植株的核酸提取到结果判定的整个检测过程。利用该方法,成功地从接种寄生疫霉的柑橘叶片、枝条和果实上检测出寄生疫霉;此外也从田间采集的10份柑橘发病样品中检测出其中3份样品含有寄生疫霉本研究成功建立了一种针对寄生疫霉的LF-RPA快速检测方法,该方法与简易核酸提取技术相结合,非常适宜于基层使用,为柑橘根腐病的快速诊断奠定了技术基础。




Abstract  
Foot and root rot caused by Phytophthora parasitica is a substantial threat to citrus cultivation, affecting both yield and quality.  Thus, rapid and accurate detection of P. parasitica plays an important role in disease management.  The aim of this study was to develop a simple diagnostic method to detect P. parasitica infection by combining recombinase polymerase amplification and lateral flow strips (LF-RPA).  To establish the LF-RPA assay of P. parasitica, the primers and probe designed based on the Ypt1 gene were tested for specificity to P. parasitica, which showed no cross-reactivity with DNAs of other related oomycete species.  The LF-RPA assay detected the amount of genomic DNA of P. parasitica which was as low as 1 pg.  To make the LF-RPA assay useful in low-resource settings, four simplified DNA extraction methods were compared, after which the LF-RPA assay was applied, with no specialized equipment, to analyze a diverse range of citrus tissues by using a simplified PEG-NaOH method for DNA extraction.  This method was successful in detecting P. parasitica in infected plant samples within 30 min.  Combining the LF-RPA assay and a simplified DNA extraction method could be a potential  detection test for P. parasitica, especially in areas with limited resources.
Keywords:  citrus disease        Phytophthora parasitica        recombined polymerase amplification        equipment-free detection  
Received: 09 June 2020   Accepted:
Fund: This work was funded by grants from the Fundamental Research Funds for the Central Universities, China (KYT202001 and JCQY201901) and the Special Fund for Agro-scientific Research in the Public Interest, China (201503112).
Corresponding Authors:  Correspondence SHEN Dan-yu, Tel: +86-25-84396355, E-mail: shendanyu@njau.edu.cn; Dou Dao-long, Tel: +86-25-84396973, E-mail: ddou@njau.edu.cn    
About author:  CHEN Wei-yu, E-mail: chinesecheng@163.com; YU Jia, E-mail: yujiauwm@163.com; * These authors contributed equally to this study.

Cite this article: 

CHEN Wei-yu, YU Jia, XU Heng, LU Xin-yu, DAI Ting-ting, TIAN Yue-e, SHEN Dan-yu, DOU Dao-long. 2021. Combining simplified DNA extraction technology and recombinase polymerase amplification assay for rapid and equipment-free detection of citrus pathogen Phytophthora parasitica. Journal of Integrative Agriculture, 20(10): 2696-2705.

Alvarez L, Gramaje D, Abad-Campos P, García-Jiménez J. 2009. Seasonal susceptibility of citrus scions to Phytophthora citrophthora and P.?nicotianae and the influence of environmental and host-linked factors on infection development. European Journal of Plant Pathology, 124, 621–635.
Blaya J, Lacasa C, Lacasa A, Martínez V, Santísima-Trinidad A B, Pascual J A, Ros M. 2015. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR. Journal of the Science of Food and Agriculture, 95, 1243–1251.
Cao Y, Zheng K, Jiang J, Wu J, Shi F, Song X, Jiang Y. 2018. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I. Food Chemistry, 266, 73–78.
Cline E T, Farr D F, Rossman A Y. 2008. A synopsis of Phytophthora with accurate scientific names, host range, and geographic distribution. Plant Health Progress, 9, 32.
Dalio R J, Magalhaes D M, Rodrigues C M, Arena G D, Oliveira T S, Souza-Neto R R, Picchi S C, Martins P M, Santos P J, Maximo H J, Pacheco I S, De Souza A A, Machado M A. 2017. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Annals of Botany, 119, 749–774.
Das A K, Bawage S S, Nerkar S G, Kumar A. 2013. Detection of Phytophthora nicotianae in water used for irrigating citrus trees by Ypt1 gene based nested PCR. Indian Phytopathology, 66, 132–134.
Donoso A, Valenzuela S. 2018. In-field molecular diagnosis of plant pathogens: Recent trends and future perspectives. Plant Pathology, 67, 1451–1461.
Doyle J J, Doyle J L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12, 39–40.
Erwin D C, Ribeiro O K. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society (APS) Press, USA. p. 562.
Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.
Graham J, Feichtenberger E. 2015. Citrus Phytophthora diseases: management challenges and successes. Journal of Citrus Pathology, 2, 1–11.
Hodgetts J, Tomlinson J, Boonham N, González-martín I, Nikoli? P, Swarbrick P, Yankey E N, Dickinson M. 2011. Development of rapid in-field loop-mediated isothermal amplification (LAMP) assays for phytoplasmas. Bulletin of Insectology, 64, S41–S42.
Ippolito A, Schena L, Nigro F. 2002. Detection of Phytophthora nicotianae and P.?citrophthora in citrus roots and soils by nested PCR. European Journal of Plant Pathology, 1088, 855–868.
Ippolito A, Schena L, Nigro F, Ligorio V S, Yaseen T. 2004. Real-time detection of Phytophthora nicotianae and P.?citrophthorain citrus roots and soil. European Journal of Plant Pathology, 110, 833–843.
Jagtap G P, Dhavale M C, Dey U. 2012. Symptomatology, survey and surveillance of citrus gummosis disease caused by Phytophthora spp. Scientific Journal of Agricultural, 1, 14–20.
Kamoun S, Furzer O, Jones J D, Judelson H S, Ali G S, Dalio R J, Roy S G, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen X R, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler B M, Grünwald N J, Mukhtar M S, et al. 2015. The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16, 413–34.
Khan M, Li B, Jiang Y, Weng Q, Chen Q. 2017. Evaluation of different PCR-based Assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene. Frontiers in Microbiology, 8, 1920.
Kong P, Hong C, Jeffers S N, Richardson P A. 2003. A species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology, 93, 822–831.
Li B, Liu P, Xie S, Yin R, Weng Q, Chen, Q. 2015. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop-mediated isothermal amplification assays. Journal of Phytopathology, 163, 185–193.
Lobato I M, O’Sullivan C K. 2018. Recombinase polymerase amplification: Basics, applications and recent advances. Trends in Analytical Chemistry, 98, 19–35.
Meng J, Wang Y. 2010. Rapid detection of Phytophthora nicotianae in infected tobacco tissues and soil samples based on its Ypt1 gene. Journal of Phytopathology, 158, 1–7.
Meng Y, Zhang Q, Ding W, Shan W X. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology, 5, 43–51.
Panabieres F, Ali G S, Allagui M B, Dalio R J, Gudmestad N C, Kuhn M L, Roy S G, Schena L, Zampounis A. 2016. Phytophthora nicotianae diseases worldwide: New knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 55, 20–40.
Puglisi I, De Patrizio A, Schena L, Jung T, Evoli M, Pane A, Van Hoa N, Van Tri M, Wright S, Ramstedt M, Olsson C, Faedda R, di San Lio G M, Cacciola S O. 2017. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam. PLoS ONE, 12, e0172085.
Queiroz B P, Melo I S. 2006. Antagonism of Serratia marcescens towards Phytophthora parasitica and its effects in promoting the growth of citrus. Brazilian Journal of Microbiology, 37, 448–450.
Silva G, Oyekanmi J, Nkere C K, Bömer M, Kumar P L, Seal S E. 2018. Rapid detection of potyviruses from crude plant extracts. Analytical Biochemistry, 546, 17–22.
Soliman H, Kumar G, El-Matbouli M. 2018. Recombinase polymerase amplification assay combined with a lateral flow dipstick for rapid detection of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonids. Parasite Vectors, 11, 234.
Takahashi R, Fukuta S, Kuroyanagi S, Miyake N, Nagai H, Kageyama K, Ishiguro I. 2014. Development and application of a loop-mediated isothermal amplification assay for rapid detection of Pythium helicoides. Fems Microbiology Letters, 355, 28–35.
Tatineni S, Sagaram U S, Gowda S, Robertson C J, Dawson W O, Iwanami T, Wang N. 2008. In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology, 98, 592–599.
Tian Y, Che Z, Sun D, He J, Liu S, Lin X. 2019a. In vitro effects of five different classes of fungicides on growth and development of Botrytis cinerea isolated from tree peony in China. Hortscience, 54, 1984–1988.
Tian Y, Che Z, Sun D, Yang Y, Lin X, Liu S. 2019b. Resistance identification of tree peony cultivars of different flowering time to gray mold pathogen Botrytis cinerea. Hortscience, 54, 328–330.
White T J, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J, eds., PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego. pp. 315–322.
Wu J, Johnson E G, Bright D B, Gerberich K M, Graham J H. 2017. Interaction between Phytophthora nicotianae and Candidatus Liberibacter asiaticus damage to citrus fibrous roots. Journal of Citrus Pathology, 4, 1.
Yan H, Zhong Y, Jiang B, Zhou B, Wu B, Zhong G. 2017. Guanggan (Citrus reticulata) shows strong resistance to Phytophthora nicotianae. Scientia Horticulturae, 225, 141–149.
Yin F, Liu J, Liu A, Li Y, Luo J, Guan G, Yin H. 2017. Rapid diagnosis of Theileria annulata by recombinase polymerase amplification combined with a lateral flow strip (LF-RPA) in epidemic regions. Veterinary Parasitology, 237, 125–129.
Zhao W, Wang T, Qi R. 2015. Ypt1 gene-based detection of Phytophthora sojae in a loop-mediated isothermal amplification assay. Journal of Plant Diseases and Protection, 122, 66–73.
Zou Y, Mason M G, Wang Y, Wee E, Turni C, Blackall P J, Trau M, Botella J R. 2017. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biology, 15, e2003916.
No related articles found!
No Suggested Reading articles found!