Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (3): 804-814    DOI: 10.1016/S2095-3119(20)63334-2
Section 4: Integrated pest management Advanced Online Publication | Current Issue | Archive | Adv Search |
Ovipositional responses of Spodoptera frugiperda on host plants provide a basis for using Bt-transgenic maize as trap crop in China
HE Li-mei1, 2*, ZHAO Sheng-yuan1*, GAO Xi-wu2, WU Kong-ming
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Spodoptera frugiperda, the pest fall armyworm (FAW), is widespread in more than 100 countries.  To date, planting insect-resistant transgenic crops is one of the main control methods in its native countries.  In this study we evaluated Bt-transgenic maize (Bt maize) and non-transgenic (conventional) maize and six other host plants in greenhouse pot experiments and field trials for oviposition preference by the Chinese populations of FAW.  In laboratory trials, female moths preferred to oviposit on maize with no significant preference between conventional and Bt maize.  However, after conventional and transgenic maize were exposed to FAW larvae and damaged, oviposition was significantly higher on transgenic maize than on the conventional one.  Field trials showed that for plants less damaged at an early stage (seedling stage), oviposition of FAW on transgenic and conventional maize was significantly higher than that on wheat, sorghum, foxtail millet, peanut and soybean while showing no significant difference between transgenic or conventional maize.  FAW adults mainly laid eggs on Bt maize, while the larval density and leaf damage rating or percentage of damaged plants were significantly lower than on conventional maize.  Larval density and its damage on conventional maize were significantly higher than that on Bt maize and the other five hosts.  Thus, maize is a highly preferred and suitable host for S. frugiperda feeding and ovipositing, and Bt maize can be used as trap crop to protect other crops.
Keywords:  fall armyworm        oviposition behavior        trap crop        Bt maize  
Received: 26 March 2020   Accepted:
Fund: This work was supported by the Key Project for Breeding Genetically Modified Organisms, China (2019ZX08012004) and the National Key Research and Development Program of China (2019YFD0300102).
Corresponding Authors:  Correspondence WU Kong-ming, E-mail:    
About author:  HE Li-mei, E-mail:; ZHAO Sheng-yuan, E-mail:; * These authors contributed equally to this study.

Cite this article: 

HE Li-mei, ZHAO Sheng-yuan, GAO Xi-wu, WU Kong-ming . 2021. Ovipositional responses of Spodoptera frugiperda on host plants provide a basis for using Bt-transgenic maize as trap crop in China. Journal of Integrative Agriculture, 20(3): 804-814.

Ba T X, Zhang Y H, Zhang Z, Guan D D, Li C C, Ji Z Y, Yin X T, Zhang A H, Tang Q B, Liu Y H, Li X R, Zhou X. 2020. The host preference and population life tables of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on maize and wheat. Plant Protection, 46, 17–23. (in Chinese)
Berdegue M, Trumble J T. 1996. Effects of plant chemical extracts and physical characteristics of Apium graveolens and Chenopodium murale on host choice by Spodoptera exigua larvae. Entomologia Experimentalis et Applicata, 78, 253–262.
Blanco C A, Portilla M, Jurat-Fuentes J L, Sánchez J F, Viteri D, Vega-Aquino P, Teran-Vargas A P, Azuara-Dominguez  A, Lopez Jr J D, Arias R S, Zhu Y C, Lugo-Barreras D, Jackson R. 2010. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) isofamilies to Cry1Ac and Cry1F proteins of Bacillus thuringiensis. Southwestern Entomologist, 35, 409–415.
Boucher T J, Ashley R, Durgy R, Sciabarrasi M, Calderwood W. 2003. Managing the Pepper maggot (Diptera: Tephritidae) using perimeter trap cropping. Journal of Economic Entomology, 96, 420–432.
Buntin G D. 2008. Corn expressing Cry1Ab or Cry1F endotoxin for fall armyworm and corn earworm (Lepidoptera: Noctuidae) management in field corn for grain production. Florida Entomologist, 91, 523–530.
Chandrasena D I, Signorini A M, Abratti G, Storer N P, Olaciregui M L, Alves A P, Pilcher C D. 2018. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Management Science, 74, 746–754.
Chitkowski R L, Turnipseed S G, Sullivan M J, Bridges W C. 2003. Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. Journal of Economic Entomology, 96, 755–762.
Cook S M, Khan Z R, Pickett J A. 2007. The use of push–pull strategies in integrated pest management. Annual Review of Entomology, 52, 375–400.
Davis F M, Williams W P. 1994. Evaluations of reproductive stage maize for resistance to southwestern corn borer (Lepidoptera: Pyralidae) using visual rating scores of leaf sheath and husk damage. Journal of Economic Entomology, 87, 1105–1112.
Dicke M, Sabelis M W, Takabayashi J, Bruin J, Posthumus M A. 1990. Plant strategies of manipulating predator prey interactions through allelochemicals: Prospects for application in pest control. Journal of Chemical Ecology, 16, 3091–3118.
Farias J R, Horikoshi R J, Santos A C, Omoto C. 2014. Geographical and temporal variability in susceptibility to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. Journal of Economic Entomology, 107, 2182–2189.
FAO (Food and Agriculture Organization of the United Nations), CABI (Commonwealth Agricultural Bureaux International). 2019. Community-based fall armyworm (Spodoptera frugiperda) monitoring, early warning and management (Training of trainers manual first edition). [2020-05-13].
Godfrey L D, Leigh T F. 1994. Alfalfa harvest strategy effect on lygus bug (Hemiptera: Miridae) and insect predator population density: Implications for use as trap crop in cotton. Environment Entomology, 23, 1106–1118.
Greene G L, Leppla N C, Dickerson W A. 1976. Velvetbean caterpillar: A rearing procedure and artificial medium. Journal of Economic Entomology, 69, 487–488.
Hardke J T, Leonard B R, Huang F, Jackson R E. 2011. Damage and survivorship of fall armyworm (Lepidoptera: Noctuidae) on transgenic field corn expressing Bacillus thuringiensis Cry proteins. Crop Protection, 30, 168–172.
Hokkanen H M T. 1991. Trap cropping in pest management. Annual Review of Entomology, 36, 119–138.
Jiang Y Y, Liu J, Xie M C, Li Y H, Yang J J, Zhang M L, Qiu K. 2019. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 45, 10–19. (in Chinese)
Jiao Y Y, Hu X Y, Peng Y F, Wu K M, Romeis J, Li Y H. 2018. Bt rice plants may protect neighbouring non-Bt rice plants against the striped stem borer, Chilo suppressalis. Proceedings of the Royal Society (B: Biological Science), 285, 20181283.
Johnson S J. 1987. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. International Journal of Tropical Insect Science, 8, 543–549.
Kebede M, Shimalis T. 2018. Out-break, distribution and management of fall armyworm, Spodoptera frugiperda J.E. Smith in Africa: The status and prospects. Academy of Agriculture Journal, 3, 551–568.
Kessler A, Baldwin I T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141–2144.
Latheef M A, Irwin R D. 1979. Factors affecting oviposition of Pieris rapae on cabbage. Environmental Entomology, 8, 606–609.
Li D Y, Zhi J H, Zhang T, Ye J Q, Yu Y C, Hu C X. 2019. Preference of Spodoptera frugiperda to four host plants. Plant Protection, 45, 50–54. (in Chinese)
Li G P, Ji T J, Sun X X, Jiang Y Y, Wu K M, Feng H Q. 2019. Susceptibility evaluation of invaded Spodoptera frugiperda population in Yunnan Province to five Bt proteins. Plant Protection, 45, 15–20. (in Chinese)
Lin K J, Lu Y H, Wan P, Yang Y Z, Wyckhuys K A G, Wu K M. 2015. Simultaneous reduction in incidence of Bemisia tabaci (Hemiptera: Aleyrodidae) and Sylepta derogata (Lepidoptera: Pyralidae) using velvetleaf, Abutilon theophrasti as a trap crop. Journal of Pest Science, 88, 49–56.
Lu Y H, Wu K M, Wyckhuys K A G, Guo Y Y. 2009. Potential of mungbean, Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Protection, 28, 77–81.
Luginbill P. 1928. The Fall Army Worm. US Department of Agriculture, Washington D. C. pp. 2–7.
Meiners T, Hacker N K, Anderson P, Hilker M. 2005. Response of the elm leaf beetle to host plants induced by oviposition and feeding: the infestation rate matters. Entomologia Experiments et Applicata, 115, 171–177.
Mitchell E R, Hu G, Johanowicz D. 2000. Management of diamondback moth (Lepidoptera: Plutellidae) in cabbage using collard as a trap crop. HortScience, 35, 875–879.
Mitchell R. 1975. The evolution of oviposition tactics in the bean weevil, Callosobruchus maculatus (F.). Ecology, 56, 696–702.
Montezano D G, Specht A, Sosa-Gómez D R, Roque-Specht V F, Sousa-Silva J C, Paula-Moraes S V, Peterson J A, Hunt T E. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26, 286–301.
Nibouche S, Tibère R, Costet L. 2012. The use of Erianthus arundinaceus as a trap crop for the stem borer Chilo sacchariphagus reduces yield losses in sugarcane: Preliminary results. Crop Protection, 42, 10–15.
Nibouche S, Tibère R, Costet L. 2019. Erianthus arundinaceus as a trap crop for the sugarcane stem borer Chilo sacchariphagus: field validation and disease risk assessment. Crop Protection, doi: 10.1016/j.cropro.2019.104877.
Olsen K M, Daly J C, Holt H E, Finnegan E J. 2005. Season-long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 98, 1007–1017.
Pitre H N, Mulrooney J E, Hogg D B. 1983. Fall armyworm (Lepidoptera: Noctuidae) oviposition: Crop preferences and egg distribution on plants. Journal of Economic Entomology, 76, 463–466.
Prokopy R J. 1972. Evidence for a marking pheromone deterring repeated oviposition in apple maggot flies. Environmental Entomology, 1, 326–332.
Ríos-Díez J D, Siegfried B, Saldamando-Benjumea C I. 2012. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to Cry1Ab and Cry1Ac endotoxins of Bacillus thuringiensis. Southwestern Entomologist, 37, 281–293.
Roitberg B, Prokopy R J. 1987. Insects that mark host plants. American Institute of Biological Sciences, 37, 400–406.
Shelton A M, Badenes-Perez F R. 2006. Concepts and applications of trap cropping in pest management. Annual Review of Entomology, 51, 285–308.
Siebert M W, Babock J M, Nolting S, Santos A C, Adamczyk Jr J J, Neese P A, King J E, Jenkins J N, Mccarty J, Lorenz G M, Fromme D D, Lassiter R B. 2008a. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Florida Entomologist, 91, 555–565.
Siebert M W, Tindall K V, Leonard B R, Van Duyn J W, Babcock J M. 2008b. Evaluation of corn hybrids expressing Cry1F (Herculex® I Insect Protection) against fall armyworm (Lepidoptera: Noctuidae) in the southern United States. Journal of Entomological Science, 43, 41–51.
Sivasupramaniam S, Moar W J, Ruschke L G, Osborn J A, Jiang C, Sebaugh J L, Brown G R, Shappley Z W, Oppenhuizen M E, Mullins J W, Greenplate J T. 2008. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of Lepidopteran pests. Journal of Economic Entomology, 101, 546–554.
Smith J E, Abbott J. 1797. The Natural History of the Rarer Lepidopterous Insects of Georgia: Including Their Systematic Characters, the Particulars of Their Several Metamorphoses, and the Plants on Which They Feed. Missouri Botanical Garden Press, London. pp. 191–192.
Sparks A N. 1979. A review of the biology of the fall armyworm. The Florida Entomologist, 62, 82–86.
Stern V M, van den Bosch R, Leigh T F. 1964. Strip cutting alfalfa for lygus bug control. California Agriculture, 18, 4–6.
Stern V M, Mueller A, Sevacherian V, Way M. 1969. Lygus bug control in cotton through alfalfa interplanting. California Agriculture, 23, 8–10.
Sun X X, Hu C X, Jia H R, Wu Q L, Shen X J, Zhao S Y, Jiang Y Y, Wu K M. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture, 20, 664–672.
Sun X X, Zhao S Y, Jin M H, Zhao H Y, Li G P, Zhang H W, Jiang Y Y, Yang X M, Wu K M. 2019. Larval spatial distribution pattern and sampling technique of the fall armyworm Spodoptera frugiperda in maize fields. Plant Protection, 45, 13–18. (in Chinese)
Thompson J N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis et Applicata, 47, 3–14.
Tindall K V, Siebert M W, Leonard B R, All J, Haile F J. 2009. Efficacy of Cry1Ac:Cry1F proteins in cotton leaf tissue against fall armyworm, beet armyworm, and soybean looper (Lepidoptera: Noctuidae). Journal of Economic Entomology, 102, 1497–1505.
Turlings T C, Turlings T CTumlinson J H. 1991. Do parasitoids use herbivore-induced plant chemical defenses to locate hosts? Florida Entomologist, 74, 42–50.
Wan P, Zhang Y J, Wu K M, Huang M S. 2005. Seasonal expression profiles of insecticidal protein and control efficacy against Helicoverpa armigera for Bt cotton in the Yangtze River Valley of China. Journal of Economic Entomology, 98, 195–201.
Williams W P, Buckley P M, Daves C A. 2006. Identifying resistance in corn to southwestern corn borer (Lepidoptera: Crambidae), fall armyworm (Lepidoptera: Noctuidae), and corn earworm (Lepidoptera: Noctuidae). Journal of Agricultural and Urban Entomology, 23, 87–95.
Wu K M, Guo Y Y. 2005. The evolution of cotton pest management practices in China. Annual Review of Entomology, 50, 31–52.
Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 321, 1676–1678.
Xu P J, Zhang D D, Wang J, Wu K M, Wang X W, Wang X F, Ren G W. 2019. The host preference of spodoptera frugiperda on maize and tobacco. Plant Protection, 45, 61–64. (in Chinese)
Zhang D D, Wu K M. 2019. The bioassay of Chinese domestic Bt-Cry1Ab and Bt-(Cry1Ab+Vip3Aa) maize against the fall armyworm, Spodoptera frugiperda. Plant Protection, 45, 54–60. (in Chinese)
Zhao Q, Zhang Y H, Liu H, Cheng D F. 2011. A method used for distinguishing between the sexes of Scotogramma trifolii. Chinese Journal of Applied Entomology, 48, 1879–1881. (in Chinese)
[1] Jing WAN, HUANG Cong, LI Chang-you, ZHOU Hong-xu, REN Yong-lin, LI Zai-yuan, XING Long-sheng, ZHANG Bin, QIAO Xi, LIU Bo, LIU Cong-hui, XI Yu, LIU Wan-xue, WANG Wen-kai, QIAN Wan-qiang, Simon MCKIRDY, WAN Fang-hao . Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 646-663.
[2] YANG Xian-ming, SONG Yi-fei, SUN Xiao-xu, SHEN Xiu-jing, WU Qiu-lin, ZHANG Hao-wen, ZHANG Dan-dan, ZHAO Sheng-yuan, LIANG Ge-mei, WU Kong-ming . Population occurrence of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in the winter season of China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 772-782.
[3] LIANG Jin-gang, ZHANG Dan-dan, LI Dong-yang, ZHAO Sheng-yuan, WANG Chen-yao, XIAO Yu-tao, XU Dong, YANG Yi-zhong, LI Guo-ping, WANG Li-li, GAO Yu, YANG Xue-qing, YUAN Hai-bin, LIU Jian, ZHANG Xiu-jie, WU Kong-ming . Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936[J]. >Journal of Integrative Agriculture, 2021, 20(3): 792-803.
No Suggested Reading articles found!