Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (4): 975-987    DOI: 10.1016/S2095-3119(19)62639-0
Special Issue: 水稻耕作栽培合辑Rice Physiology · Biochemistry · Cultivation · Tillage
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Application of brassinolide alleviates cold stress at the booting stage of rice
WANG Shi-qiang1, 2, 3*, ZHAO Hai-hong4*, ZHAO Li-ming2, GU Chun-mei2, NA Yong-guang2, XIE Bao-sheng2, CHENG Shi-hua3, PAN Guo-jun 
1 Postdoctoral Scientific Research Station of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, P.R.China
2 Rice Research Institute of Land Reclamation Academy in Heilongjiang Province, Jiamusi 154007, P.R.China
3 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, P.R.China
4 Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, P.R.China
5 Jiamusi Rice Research Institute, Heilongjiang Academy of Agriculture Sciences, Jiamusi 154026, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The objective of the study was to determine the physiological mechanisms of plants in response to brassinolide (BR) alleviating cold water stress on rice.  In this study, physiological responses of rice to exogenous BR and cold water submergence were investigated using the chilling-tolerant cultivar Kongyu 131 (KY131) and the chilling-sensitive cultivar Kenjiandao 6 (KJD6).  A total of 2 mg L–1 BR increased activities of superoxide dismutase (SOD) and peroxidase (POD) and the contents of soluble sugar, soluble protein, and chlorophyll, but decreased the malondialdehyde (MDA) content in KY131 and KJD6 under cold water stress.  The observed decreases in SOD and POD activities and MDA content recovered quickly after plants were returned to irrigation with water at temperatures of about 23.0°C in 2014.  Additionally, the contents of nitrogen (N), phosphorous (P), and potassium (K) were increased by BR treatment under cold water stress.  Exposure to BR also raised the percentage of high effective leaf area and leaf area index at the heading stage.  Furthermore, it promoted soluble sugar synthesis, increased the rate of dry matter accumulation, and enhanced the export and translocation rates of the stem-sheath.  The yield in KJD6 was significantly (P≤0.01 and P≤0.05) higher than that of the control in 2013 and 2014, respectively.  The effect of BR treatment on rice leaf SOD and POD activities, MDA, chlorophyll, P, and stem-sheath K contents were more significant in KJD6 than in KY131.  In conclusion, exogenous BR effectively reduced the physiological and metabolic damage in rice due to cold stress at the booting stage, promoted functional recovery in plants that received irrigation with water at a normal temperature following cold stress, and mitigated the effects of cold water stress on yield.  The two varieties exhibited differential responses to BR; the weaker cold-resistant variety was more sensitive to BR and displayed stronger responses to exogenous BR.
Keywords:  rice        cold water stress        brassinolide        physiological characteristics  
Received: 20 November 2018   Accepted:
Fund: This research was supported by the earmarked fund for Agriculture Research System of China (CARS-01), the Agro-research Projects in Public Interest of China (201403002 and 201303102), and the National Key R&D Program of China (2016YFD0300504-2).
Corresponding Authors:  Correspondence CHENG Shi-hua, Tel: +86-571-63370188, Fax: +86-571-63370265, E-mail: chengshihua@caas.cn; PAN Guo-jun, Tel: +86-454-8841390, Fax: +86-454-8841387, E-mail: panguojun777@163.com    
About author:  WANG Shi-qiang, Tel: +86-454-8359632, E-mail: wangshiqiang 1022@163.com;* These authors contributed equally to this study.

Cite this article: 

WANG Shi-qiang, ZHAO Hai-hong, ZHAO Li-ming, GU Chun-mei, NA Yong-guang, XIE Bao-sheng, CHENG Shi-hua, PAN Guo-jun. 2020. Application of brassinolide alleviates cold stress at the booting stage of rice. Journal of Integrative Agriculture, 19(4): 975-987.

Cai H L. 2016. Effect of N fertilizer application on nitrogen metabolism and nitrogen use efficiency of japonica rice under cold water stress. MSc thesis, Northeast Agricultural University, China. (in Chinese)
Cao Y Y, Zhao H. 2008. Protective roles of brassinolide on rice seedlings under high temperature stress. Rice Science, 15, 63–68.
Chen J X, Wang X F. 2002. Experimental Guide for Plant Physiology. South China University of Technology Press, Guangzhou. pp. 70–110. (in Chinese)
Chen S N, Liu J M ,You H L, Zhu H J, Qin Z B, Hong G M, Shen Y G. 1997. The effect of cold resistant and homobrassinolide on the chilling resistance of plateau rice. Acta Botanica Yunnanica, 19, 184–190. (in Chinese)
Efimova M V, Savchuk A L, Hasan J A K, Litvinovskaya R P, Khripach V A, Kholodova V P, Kuznetsov V V. 2014. Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russian Journal of Plant Physiology, 61, 733–743.
Jia Y, Zou D T, Wang J G, Liu H L, Inayat M A, Sha H J, Zheng H L, Sun J, Zhao H W. 2015. Effect of low water temperature at reproductive stage on yield and glutamate metabolism of rice (Oryza sativa L.) in China. Field Crops Research, 175, 16–25.
Han G Q. 2011. Japonica Rice in China Cold Region. China Agriculture Press, Beijing. pp. 1, 15, 17, 51. (in Chinese)
Han T. 2014. Booting stage cold water stress on rice carbohydrates form accumulation pattern. MSc thesis, Northeast Agricultural University, China. pp. 33–36. (in Chinese)
Hormoz B R, Vincent P G, John L. 2001. Root system adjustments: Regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 126, 305–320.
Hu Y L, Hu D N, Yuan S G, Guo X M. 2011. Photosynthesis and seed characteristics of five-year-old camellia oleifera with fertilizer and brassinolides (BRs) applications. Journal of Zhejiang A&F University, 28, 194–199. (in Chinese)
Gill M B, Cai K F, Zhang G P, Zeng F R. 2017. Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. Plant Growth Regulation, 83, 447–455.
Kim K Y, Ko J C, Kim B K, Noh K I, Ko J K, Kim Y D, Kim C K. 2007. Transcriptional pro?le by cold water stress at the booting stage of japonica rice. Molecular Plant Breeding, 5, 184–185.
Li B Q, Zhang C F, Cao B H, Qin G Z, Wang W H, Tian S P. 2012. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43, 2469–2480.
Li G X, Chen H M, Wu R S, He C Y. 2012. Resistance to high salt and cold stress of transgenic rice seedings with over-expressed and RNAi-silenced OsBTF3. Chinese Journal of Rice Science, 26, 5–8. (in Chinese)
Li H S, Sun Q, Zhao S J, Zhang W H. 2000. Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. pp. 59–88, 184–260. (in Chinese)
Li J L, Huo Z G, Wu L J, Zhu Q H, Hu F. 2014. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage. Chinese Journal of Rice Science, 28, 277–288. (in Chinese)
Liao X H, Zhang J H, Wang J J, Yang X H, Xu Z. 1999. Effect of BR-120 on defence of cool injury in rice at booting stage. Journal of Yunnan University (Natural Sciences), 21, 153–155. (in Chinese)
Masaharu K, Kouki H, Tadaki H. 2002. Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Functional Plant Biology, 29, 787–795.
Matusmoto T, Yamada K, Yoshizawa Y, Oh K. 2016. Comparison of effect of brassinosteroid and gibberellin biosynthesis inhibitors on growth of rice seedlings. Rice Science, 23, 51−55.
Pan G J. 2014. Japonica Breeding in Cold Regions. China Agriculture Press, Beijing. pp. 267–273. (in Chinese)
Roel A, Mutters R G, Eckert J W, Plant R E. 2005. Effect of low water temperature on rice yield in California. Agronomy Journal, 97, 943–948.
Santos L R, Batista B L, Lobato A K S. 2018. Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica, 56, 591–605.
Su Q F, Zhang W, Wang W W, Meng L M, LI H, Jin Q M, Zhao Z W, Dong B C. 2013. Analysis of test against chilling injury and phytotoxicity of seed coating agent to corn by additive brassinolide. Journal of Maize Sciences, 21, 137–140. (in Chinese)
Ding Y. 2019. The influence of rice area expansion on temperature in the three northeast provinces from 2001 to 2018. MSc thesis, Harbin Normal University, China. p. 28. (in Chinese)
Tang Q Y. 2010. Dps Data Processing System - Experimental Design, Statistical Analysis and Data Mining. Science Press, Beijing. (in Chinese)
Wang B K, Zeng G W. 1993. Effect of epibrassinolide on the resistance of the resistance of rice seedlings to chilling injury. Acta Phytophysiologica Sinica, 19, 38–42. (in Chinese)
Wang G J, Wang J Y, Ma D R, Miao W, Zhao M H, Chen F. 2015. Responses of antioxidant system to cold water stress in weedy and cultivated rice with different chilling sensitivity. Scientia Agricultura Sinica, 48, 1660–1668. (in Chinese)
Wang G J, Wang J Y, Miao W, Zhao M H, Chen W F. 2013. Responses of antioxidant system to long-term cold water stress in new rice line J07-23 with strong cold tolerance. Acta Agronomica Sinica, 39, 753–759. (in Chinese)
Wang Q, Ding T, Gao L P, Pang J, Yang N. 2012. Effect of brassinolide on chilling injury of green bell pepper in storage. Scientia Horticulturae, 144, 195–200.
Wang S Q. 2016. The difference of low temperature tolerance and regulation of exogenous substances at booting stage of rice in cold region. Ph D thesis, Shenyang Agricultural University, China. pp. 38–49. (in Chinese)
Wang S Q, Chen S Q, Zhao H H, Xiao C L, Gu C M, Na Y G, Xie B S, Cao L Y, Cheng S H. 2016a. Effects of booting stage cold stress on yield components and plant type characteristics of rice in cold region. Journal of Shenyang Agricultural University, 47, 129–134. (in Chinese)
Wang S Q, Song X H, Zhao H H, Sun M M, Xiao C L, Gu C M, Na Y G, Xie B S, Cao L Y, Cheng S H. 2016b. Effect of cold stress in booting stage on rice yield and quality in the cold region. Research of Agricultural Modernization, 37, 579–586. (in Chinese)
Wang S Q, Zhao H H, Xiao C L, Zhao L M, Gu C M, Na Y G, Xie B S, Cheng S H. 2016c. Effects of booting stage cold stress on dry matter production of rice in cold region. Chinese Journal of Rice Science, 30, 313–322. (in Chinese)
Wang S Q, Zhao H H, Zhao L M, Wang L P, Wang H, Gu C M, Na Y G. 2017. Research progress of physiological function changes and regulations in rice under chilling damage. Chinese Agricultural Science Bulletin, 33, 1–6. (in Chinese)
Xi Z, Wang Z Z, Fang Y L, Hu Z Y, Hu Y, Deng M M, Zhang Z W. 2013. Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regulation, 71, 57–65.
Xu X D. 2003. Effects and precaution policy of rice on chilling stress in Heilongjiang province. Chinese Agricultural Science Bulletin, 19, 135. (in Chinese)
Yang A J, Anjum S A, Wang L, Song J X, Zong X F, Lv J, Zohaib A, Ali I, Yan R, Zhang Y, Dong Y F, Wang S G. 2018. Effect of foliar application of brassinolide on photosynthesis and chlorophyll fluorescence traits of leymus chinensis under varying levels of shade. Photosynthetica, 56, 873–883.
Zhang L X, Zhang T F, Li L H. 1997. Methods and Techniques of Plant Biochemical Experiment. 2nd ed. Higher Education Press, Beijing. pp. 188–192. (in Chinese)
Zang X, Mei X G, Zhang C H, Lu C T, Ke T. 2011. Improved paclitaxel accumulation in cell suspension cultures of taxus chinensis by brassinolide. Biotechnology Letters, 23, 1047–1049.
Zhang X Z. 1992. Crop Physiology Research Method. Agriculture Press, Beijing. (in Chinese)
Zhao J, Qin J J, Song Q, Sun C Q, Liu F X. 2016. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.). Journal of Integrative Agriculture, 15, 1933–1943.
Zhao X Q, Zhang T, Wang W S, Zhang F, Zhu L H, Fu B Y, Li Z K. 2013. Time-course metabolic profiling in rice under low temperature treatment. Acta Agronomica Sinica, 39, 720–726. (in Chinese)
Zhou T, Zhou X M, Hu Y J, Jiang T L, Guo J X. 2004. Effect of BR on chilling resistance of maize seedlings. Journal of Jilin Normal University (Natural Science Edition), 26, 6–8. (in Chinese)
Zhou Y X, Guo X M, Lu S B, Hu Y L, Hu D N, Niu D K, Tu S P. 2013. Effect of water, nutrient and brassinolides on number of blossom, leaf nutrition and seed oil content of camellia oleifera. Plant Nutrition and Fertilizer Science, 19, 387–395. (in Chinese)
Zhu X H. 2006. Effects of magnesium fertilizer and brassinolide on yield, quality and nutrient absorption of banana. MSc thesis, Huazhong Agricultural University, China. pp. 42–52. (in Chinese)
Zou D T, Liu H L. 2013. Studies on Rice Cold Tolerant and Sensitive Lines to Low Temperature Stress in Cold Area of Northeastern China. China Meteorological Press, Beijing. pp. 22–23, 35. (in Chinese)
[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[5] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[8] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[9] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[10] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[11] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[12] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[13] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[14] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[15] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
No Suggested Reading articles found!