Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (7): 1441-1448    DOI: 10.1016/S2095-3119(15)61208-4
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of a novel gain-of-function mutant allele, slr1-d5, of rice DELLA protein
ZHANG Yun-hui1*, BIAN Xiao-feng1*, ZHANG Suo-bing1, LING Jing1, WANG Ying-jie1, WEI Xiao-ying2, FANG Xian-wen1
1 The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm/Jiangsu Provincial Key Laboratory of Agrobiology/Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R.China
2 Shandong Business Institute, Yantai 264670, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract    Controlling the height of crops plays a crucial role for their yields. The large scale utilization of semi-dwarf varieties has greatly improved crop yield, providing an effective support for world food security. In rice, a main food for over half of the world’s population, a number of dwarf loci have been identified. However, most of them are recessive, such as the ‘green revolution’ gene sd1. To gain more beneficial loci for rice breeding programs, exploring new mutations is needed, especially the dominant loci which can be used broadly for hybrid breeding. Here, we isolated a novel dominant dwarf rice mutant, slr1-d5. All of the internodes of slr1-d5 are reduced. We find that the responsiveness of slr1-d5 to gibberellin (GA), GA3, was significantly reduced. Map-based cloning revealed that the dominant dwarfism of slr1-d5 was caused by an amino acid substitution in the N-terminal TVHYNP domain of rice DELLA protein, SLR1, where the conserved amino acid Pro (P) was substituted to His (H). Our findings not only further prove the pivotal role of TVHYNP motif in regulating SLR1 stability, but also provide a new dwarf source for improvement of rice germplasms.
Keywords:  rice        dominant dwarf        DELLA protein        gibberellin  
Received: 09 June 2015   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31401036), the Jiangsu Independent Innovation Project (CX(14)5005), the Natural Science Foundation of Jiangsu Province, China (BK20130706), and the Basal Research Fund of Jiangsu Acadamy of Agricultural Sciences, China (ZX(15)4015).

Corresponding Authors:  FANG Xian-wen, Tel: +86-25-84390321, E-mail: xianwen_fang@hotmail.com    
About author:  HANG Yun-hui, E-mail: zyhrice@163.com; BIAN Xiao-feng, E-mail: bianxiaofeng2@163.com

Cite this article: 

ZHANG Yun-hui, BIAN Xiao-feng, ZHANG Suo-bing, LING Jing, WANG Ying-jie, WEI Xiao-ying, FANG Xian-wen. 2016. Identification of a novel gain-of-function mutant allele, slr1-d5, of rice DELLA protein. Journal of Integrative Agriculture, 15(7): 1441-1448.

Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim R B, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. 2009. Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Molecular Genetics and Genomics, 281, 223–231.

Aasno K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M. 2007. Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breeding Science, 57, 53–58.

Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. 1997. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theoretical and Applied Genetics, 95, 553–567.

Dellaporta S L, Wood J, Hicks J B. 1983. A plant DNA mini preparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.

Dill A, Jung H S, Sun T P. 2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences of the United States of America, 98, 14162–14167.

Fleet C M, Sun T P. 2005. A DELLAcate balance: The role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology, 8, 77–85.

Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. 2004. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. The Plant Journal, 37, 626–634.

Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell, 18, 3399–3414.

Hargrove T R, Cabanilla V L. 1979. The impact of semi-dwarf varieties on Asian rice-breeding programs. Bioscience, 29, 731–735.

Hedden P. 2003. The genes of the green revolution. Trends in Genetics, 19, 5–9.

Hedden P, Phillips A L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 5, 523–530.

Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. 2010. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. The Plant Cell, 22, 2680–2696.

Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. 2001. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell, 13, 999–1010.

Khush G S. 2001. Green revolution: The way forward. Nature Reviews Genetics, 2, 815–822.

Kikuchi F, Futsuhara Y. 1997. Inheritance of morphological characters. 2. Inheritance of semi-dwarf. In: Matsuo T, Kumazawa K, Ishii R, Ishihara K, Hirata H, eds., Science of the Rice Plant. vol 3. Food and Agricultural Policy Research Center, Tokyo, Japan. pp. 309–317.

Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. 2002. Positional cloning of rice semidwarfing gene, sd-1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellins synthesis. DNA Research, 9, 11–17.

Murase K, Hirano Y, Sun T P, Hakoshima T. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456, 459–464.

Nishimura A, Aichi I, Matsuoka M. 2006. A protocol for Agrobacterium-mediated transformation in rice. Nature Protocol, 1, 2796–2802.

Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development, 11, 3194–3205.

Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400, 256–261.

Richards D E, King K E, Ait-ali T, Harberd N P. 2001. How gibberellins regulates plant growth and development: A molecular genetic analysis of gibberellins signaling. Annual Review Plant Physiology and Plant Molecular Biology, 52, 67–88.

Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchitanaka M, Ishiyama K. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 134, 1642–1653.

Sanguinetti C J, Dias N E, Simpson A J G. 1994. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 17, 915–919.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. 2002. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature, 416, 701–702.

Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. 2003. Accumulation of phosphorylated repressor for gibberellins signaling in an F-box mutant. Science, 299, 1896–1898.

Spielmeyer W, Ellis M, Chandler P. 2002. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 99, 9043–9048.

Sun T P, Gubler F. 2004. Molecular mechanism of gibberellin signalingin plants. Annual Review of Plant Biology, 55, 197–223.

Takeda K. 1977. Internode elongation and dwarfism in some graminaeous plants. Gamma Field Symposia, 16, 1–18.

Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 437, 693–698.

Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. 2007. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. The Plant Cell, 19, 2140–2155.

Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M, Maier A, Schwechheimer C. 2007. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. The Plant Cell, 19, 1209–1220.

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59, 225–251.

Zhang Y H, Zhang S B, Lin J, Wang Y J, Fang X W. 2014. Research progress on cloning and functional analysis of plant height in rice (Oryza sativa L.). Chinese Agricultural Science Bulletin, 30, 1–7. (in Chinese)
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[7] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[8] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[9] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[10] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[11] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[12] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[13] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[14] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

[15] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

No Suggested Reading articles found!