Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (4): 698-705    DOI: 10.1016/S2095-3119(14)60822-4
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Cloning and RNA interference analysis of the salivary protein C002 gene in Schizaphis graminum
 ZHANG Yong, FAN Jia, SUN Jing-rui, CHEN Ju-lian
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The full-length cDNA of functionally-unknown salivary protein C002 in Schizaphis graminum was cloned using rapid amplification of cDNA ends (RACE) and designated as SgC002 (GenBank accession no. KC977563). It is 767 bp long and encodes a protein of 190 amino acid residues with a predicted mass of 21.5 kDa and a predicted cleavage site of N-terminal signal peptide between the 24th and the 25th residues. SgC002 is specifically expressed in salivary gland with the highest level at the 2nd instar. Introducing SgC002-specific 476-siRNA, but not 546-siRNA to aphids through artificial diet significantly suppressed SgC002 expression. Silencing SgC002 gene led to lethality of the aphid on wheat plants, but not on pure artificial diet. Our study demonstrated that artificial diet-mediated RNAi can be a useful tool for research on the roles of genes in aphid salivary gland, and also provided new insights into the characteristics of C002 in wheat aphids.

Abstract  The full-length cDNA of functionally-unknown salivary protein C002 in Schizaphis graminum was cloned using rapid amplification of cDNA ends (RACE) and designated as SgC002 (GenBank accession no. KC977563). It is 767 bp long and encodes a protein of 190 amino acid residues with a predicted mass of 21.5 kDa and a predicted cleavage site of N-terminal signal peptide between the 24th and the 25th residues. SgC002 is specifically expressed in salivary gland with the highest level at the 2nd instar. Introducing SgC002-specific 476-siRNA, but not 546-siRNA to aphids through artificial diet significantly suppressed SgC002 expression. Silencing SgC002 gene led to lethality of the aphid on wheat plants, but not on pure artificial diet. Our study demonstrated that artificial diet-mediated RNAi can be a useful tool for research on the roles of genes in aphid salivary gland, and also provided new insights into the characteristics of C002 in wheat aphids.
Keywords:  Schizaphis graminum       salivary protein C002       cDNA clone       siRNA  
Received: 17 February 2014   Accepted:
Fund: 

The project was supported by the National Natural Science Foundation of China (30971920, 31371946), the International Cooperation Project between China and Belgium (2010DFA32810) and the Earmarked Fund for Modern Agro-Industry Technology Research System, China (CARS- 3).

Corresponding Authors:  CHEN Ju-lian, Tel: +86-10-62813685,E-mail: jlchen@ippcaas.cn     E-mail:  jlchen@ippcaas.cn
About author:  ZHANG Yong, E-mail: zhangyongnky@163.com;

Cite this article: 

ZHANG Yong, FAN Jia, SUN Jing-rui, CHEN Ju-lian. 2015. Cloning and RNA interference analysis of the salivary protein C002 gene in Schizaphis graminum. Journal of Integrative Agriculture, 14(4): 698-705.

Blackman R L, Eastop V F. 2000. Aphids on the World’s Crops:An Identification and Information Guide. John Wiley & Sons,Chichester, England. p. 466.

Bos J I, Prince D, Pitino M, Maffei M E, Win J, Hogenhout S A.2010. A functional genomics approach identifies candidateeffectors from the aphid species Myzus persicae (greenpeach aphid). PLoS Genetic, 6, doi: 10.1371/journal.pgen.1001216

Carolan J C, Fitzroy C I, Ashton P D, Douglas A E, Wilkinson TL. 2009. The secreted salivary proteome of the pea aphid,Acyrthosiphon pisum, characterised by mass spectrometry.Proteomics, 9, 2457-2467

Chen J L, Ni H X, Ding J H, Sun J R. 2000. Studies on achemically defined diet of English grain aphid. ScientiaAgricultura Sinica, 33, 54-59 (in Chinese)

Ciladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O,Galun E. 2003. Small interfering RNA inhibits hepatitis Bvirus replication in mice. Molecular Therapy, 8, 769-776

Far R K-K, Sczakiel G. 2003. The activity of siRNA inmammalian cells is related to structural target accessibility:a comparison with antisense oligonucleotides. Nucleic AcidsResearch, 31, 4417-4424

Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, MelloC C. 1998. Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans. Nature,391, 806-811

Harmel N, Ltocart E, Cherqui A, Giordanengo P, MazzucchelliG, Guillonneau F, De Pauw E, Haubruge E, Francis F.2008. Identification of aphid salivary proteins: a proteomicinvestigation of Myzus persicae. Insect Molecular Biology,17, 165-174

He Z B, Chen B, Feng G Z. 2009. RNA interference and itsapplication in entomology. Chinese Bulletin of Entomology,46, 525-532 (in Chinese)

Holen T, Amarzguioui M, Wigger M T, Babaie E, Prydz H.2002. Positional effects of short interfering RNAs targetingthe human coagulation trigger tissue factor. Nucleic AcidsResearch, 30, 1757-1766

Huvenne H, Smagghe G. 2010. Mechanisms of dsRNA uptakein insects and potential of RNAi for pest control: A review.Journal of Insect Physiology, 56, 227-235

Livak K J, Schmittgen T D. 2001. Analysis of relative geneexpression data using real-time quantitative PCR and the2-ΔΔCT method. Methods, 25, 402-408

Miles P W. 1987. Plant-sucking bugs can remove the contents ofcells without mechanical damage. Experientia, 43, 937-939

Miles P W. 1999. Aphid saliva. Biological Reviews of theCambridge Philosophical Society, 74, 41-85

Mutti N S. 2006. Molecular studies of the salivary glands of thepea aphid, Acrythosiphon pisum. Ph D thesis, Kansas StateUniversity, Manhattan, KS.

Mutti N S, Louis J, Pappan L K, Pappan K, Begum K, Chen MS, Park Y, Dittmer N, Marshall J, Reese J C, Reeck G R.2008. A protein from the salivary glands of the pea aphid,Acyrthosiphon pisum, is essential in feeding on a host plant.Proceedings of the National Academy of Sciences of theUnited States of America, 105, 9965-9969

Mutti N S, Park Y, Reese J C, Reeck G R. 2006. RNAiknockdown of a salivary transcript leading to lethality inthe pea aphid, Acyrthosiphon pisum. Journal of InsectScience, 6, 1-7

Pitino M, Coleman A D, Maffei M E, Ridout C J, Hogenhout SA. 2011. Silencing of aphid genes by dsRNA feeding fromplants. PLoS ONE, 6, doi: 10.1371/journal.pone.0025709

Pitino M, Hogenhout S A. 2013. Aphid protein effectors promoteaphid colonization in a plant species-species manner.Molecular Plant-Microbe Interactions, 26, 130-139

Prado E, Tjallingii W F. 2007. Behavioral evidence for localreduction of aphid induced resistance. Journal of InsectScience, 7, 48.

Ryan J D, Morgan A T, Richardson P E, Johnson R C, MortA J, Eikenbary R D. 1990. Greenbugs and wheat: amodel system for the study of phytotoxic Homoptera. In:Campbell R K, Eikenbary R D, eds., Aphid-Plant GenotypeInteractions. Elsevier, Amsterdam, The Netherlands. pp.171-186

Song E, Lee S Y, Wang J, Ince N, Ouyang N T, Min J, ChenJ S, Shankar P, Liberman J

 2003. RNA interferencetargeting fas protects mice from fluminant hepatitis. NatureMedeicine, 9, 347-351

Yang G, You M S, Zhao Y C, Liu C H 2009. RNA interferencein insects. Acta Entomologica Sinica, 52, 1156-1162 (inChinese)

Yang Z X, Wu Q J, Wang S L, Wen L Z, Xu B Y, Zhang J,Zhang Y J 2009. Silencing of cadherin-like gene in thediamondback moth, Plutella xylostella (Lepidoptera:Plutellidae), using RNAi technique. Acta EntomologicaSinica, 52, 832-837 (in Chinese)

Yoshinari K, Miyagishi M, Taira K 2004. Effects on RNAi ofthe tight structure, sequence and position of the targetedregion. Nucleic Acids Research, 32, 691-699
[1] YIN Yue-yan, HUA Meng-ying, ZHAO Kuang-jie, WAN Qiong-lian, BU Shan, LU Yu-wen, ZHENG Hong-ying, RAO Shao-fei, YAN Fei, PENG Jie-jun, CHEN Hai-ru, CHEN Jian-ping. Construction of chimeric viruses based on pepper mild mottle virus using a modified Cre/loxP system[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2456-2463.
[2] XIAO Shan, FANG Qi, LIU Ming-ming, ZHANG Jiao, WANG Bei-bei, YAN Zhi-chao, WANG Fang, David W. STANLEY, YE Gong-yin. Genome-wide characterization of miRNA and siRNA pathways in the parasitoid wasp Pteromalus puparum[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1106-1115.
[3] ZHANG Bai-zhong, LIU Jun-jie, YUAN Guo-hui, CHEN Xi-ling, GAO Xi-wu. Selection and evaluation of potential reference genes for gene expression analysis in greenbug (Schizaphis graminum Rondani)[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2054-2065.
[4] LI Li, GUO Cheng, WANG Biao, ZHOU Tong, LEI Yang, DAI Yu-hua, HE Wen, LIANG Chun, WANG Xi-feng. RNAi-mediated transgenic rice resistance to Rice stripe virus[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2539-2549.
[5] Michelle Cilia, Michael Bereman, Tara Fish, Michael J MacCoss , Stewart Gray. Homopteran Vector Biomarkers for Efficient Circulative Plant Virus Transmission are Conserved in Multiple Aphid Species and the Whitefly Bemisia tabaci[J]. >Journal of Integrative Agriculture, 2012, 11(2): 249-262.
[6] LEI Lei, DOU Lin , WANG Hua-yan. The Defined siRNAs Suppress Nanog and Sox2 Expressions in Mouse ES Cells[J]. >Journal of Integrative Agriculture, 2011, 10(9): 1475-1481.
No Suggested Reading articles found!