Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (09): 2054-2065    DOI: 10.1016/S2095-3119(18)61903-3
Special Issue: 昆虫和植物互作合辑Insect and Plant Interact
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Selection and evaluation of potential reference genes for gene expression analysis in greenbug (Schizaphis graminum Rondani)
ZHANG Bai-zhong1, 2*, LIU Jun-jie1*, YUAN Guo-hui2, CHEN Xi-ling1, GAO Xi-wu3 
1 Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, P.R.China
2 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, P.R.China
3 Department of Entomology, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
In order to precisely assess gene expression level, a suitable internal reference gene must be chosen to quantify real-time reverse transcription polymerase chain reaction (RT-qPCR) data.  For greenbug, Schizaphis graminum, a suitable reference gene for assessing the level of transcriptional expression of target genes has yet to be explored.  In our study, eight reference genes, elongation fator 1 beta (Ef1β), TATA box binding protein (TBP), alpha-tubulin (α-TUB), 18S ribosomal (18S), 28S ribosomal (28S), glyceraldehyde-3-phosphate (GAPDH), actin (ACT), and ribosomal protein L18 (RPL18) were evaluated in S. graminum at different developmental stages, tissues, and insecticide treatments.  To further explore whether these genes are suitable to serve as internal control, three software-based approaches (geNorm, BestKeeper, and NormFinder), ?Ct method, and one web-based comprehensive tool (RefFinder) were employed to analyze and rank the tested genes.  The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated according to normalized gene expression data of three target genes, heat shock protein gene (HSP70), cytocrome P450 gene (SgraCYP18A1), and glutathione S-transferase (GST).  We found that the most suitable reference genes varied considerably under different experimental conditions.  For developmental stages, α-TUB and 28S were the optimal reference genes; for different tissues, 18S and ACT were suitable reference genes; for insecticide treatments, 28S and α-TUB were suitable for normalizations of expression data.  In addition, 28S and α-TUB were the suitable reference gene as they had the most stable expression among different developmental stages, tissues and insecticide treatments.  This should be useful for the selection of the suitable reference genes to obtain reliable RT-qPCR data in the gene expression of S. graminum.
 
Keywords:  Schizaphis graminum        gene expression        normalization        RT-qPCR        reference gene  
Received: 21 September 2017   Accepted:
Fund: The authors are highly obliged to the National Key Research and Development Program of China (2017YFD0201700), the Key Science and Technology Program (Agriculture) of Henan, China (182102110053), the Major Projects of Henan Institute of Science and Technology, China (14QN024), the Project of High-Level Talent Introduction of Henan Institute of Science and Technology, China (208010616003), the Scientific and Technological Innovation of Henan Institute of Science and Technology, China (208010616005) for the financial support given to the present research work.
Corresponding Authors:  Correspondence YUAN Guo-hui, E-mail: hnndygh@126.com; CHEN Xi-ling, E-mail: chenxiling@hist.edu.cn; GAO Xi-wu, E-mail: gaoxiwu@263.net.cn    
About author:  ZHANG Bai-zhong, E-mail: 281341651@qq.com; LIU Jun-jie, E-mail: 15560148574@163.com; * These authors contributed equally to this study.

Cite this article: 

ZHANG Bai-zhong, LIU Jun-jie, YUAN Guo-hui, CHEN Xi-ling, GAO Xi-wu. 2018. Selection and evaluation of potential reference genes for gene expression analysis in greenbug (Schizaphis graminum Rondani). Journal of Integrative Agriculture, 17(09): 2054-2065.

Al-Mousawi A H, Richardson P E, Burton R L. 1983. Ultrastructural studies of greenbug (Hemiptera: Aphididae) feeding damage to susceptible and resistant wheat cultivars. Annals of the Entomological Society of America, 76, 964–971.
Andersen C L, Jensen J L, Ørntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250.
Bagnall N H, Kotze A C. 2010. Evaluation of reference genes for real-time PCR quantification of gene expression in the Australian sheep blowfly, Lucilia cuprina. Medical & Veterinary Entomology, 24, 176–181.
Bettencourt B R, Hogan C C, Nimali M. 2007. Polyglutamine expansion in Drosophila: Thermal stress and Hsp70 as selective agents. Journal of Biosciences, 32, 537–547.
Bustin S A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.
Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.
Burton R L,Simon D D, Starks K J, Morrison R D. 1985. Seasonal damage by greenbugs (Homoptera: Aphididae) to a resistant and a susceptible variety of wheat. Journal of Economic Entomology, 78, 395–401.
Chandra G S, Asokan R, Manamohan M, Kumar N K, Sita T. 2014. Evaluation of reference genes for quantitative real-time PCR normalization in cotton bollworm Helicoverpa armigera. Molecular Biology, 48, 927.
Chandna R, Augustine R, Bisht N C. 2012. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS ONE, 7, e36918.
Chen L, Zhong H Y, Kuang J F, Lu W, Li J. 2011.Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta, 234, 377–390.
Cheng D, Zhang Z, He X, Liang G W. 2013. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE, 8, e57718.
Ciric L. 2010. Real-time PCR: Current technology and applications. ACB News, 568, 6.
Glare E M, Divjak M, Bailey M J, Walters E H. 2002. β-Actin and GAPDH reference gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax, 57, 765–770.
Gu S H, Wu K M, Guo Y Y, Field L M, Pickett J A. 2013. Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii Glover. PLoS ONE, 8, e73524.
Hiel M B V, Wielendaele P V, Temmerman L, Soest S V, Vuerinckx K, Huybrechts R, Broeck J V, Simonet G. 2009. Identification and validation of reference genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Molecular Biology, 10, 56.
Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity, 6, 279.
Hussain A, Razaq M, Zaka S M, Shahzad W, Mahmood K. 2015. Effect of aphid infestation on photosynthesis, growth and yield of Brassica carinata A. Braun. Pakistan Journal of Zoology, 47, 1335–1340.
Kieckhefer R W, Kantack B H. 1988. Yield losses in winter grains caused by cereal aphids (Homoptera: Aphididae) in South-Sakota. Journal of Economic Entomology, 81, 317–321.
Kindler S D, Elliott N C, Giles K L, Giles, Royer T A, Fuentes-Granados R, Tao F. 2002. Effect of greenbugs (Homoptera: Aphididae) on yield loss of winter wheat. Journal of Economic Entomology, 95, 89–95.
Lage J, Skovmand B, Andersen S B. 2003. Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. Journal of Economic Entomology, 96, 1922–1928.
Li Z Q, Zhang S,  Luo J. Y, Wang C Y,  Lv L M, Dong S L, Cui J J. 2013. Ecological adaption analysis of the cotton aphid  (Aphis gossypii) in different phenotypes by transcriptome comparison. PLoS ONE, 8, e83180.
Liang P, Guo Y, Zhou X, Gao X W. 2014. Expression profiling in Bemisia tabaci under insecticide treatment: Indicating the necessity for custom reference gene selection. PLoS ONE, 9, e87514.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–??CT method. Methods, 25, 402–408.
Lord J C, Hartzer K, Toutges M, Oppert B. 2010. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. Journal of Microbiological Methods, 80, 219–221.
Lu Y H, Yuan M, Gao X, Kang T, Zhan S, Wan H, Li J. 2013. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE, 8, e68059.
Lu Y H, Gao X W. 2007. A method for mass culture of wheat aphids. Chinese Bulletin of Entomology, 44, 289–290. (in Chinese)
Ma K S, Li F, Liang P Z, Chen X W, Liu Y, Gao X W. 2016. Identification and validation of reference genes for the normalization of gene expression data in qRT-PCR analysis in Aphis gossypii (Hemiptera: Aphididae). Journal of Insect Science, 16, 1–9.
Majerowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza A L, Meyer-Fernandes J R, Braz G R C, Gondim K C. 2011. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Molecular Biology, 20, 713–722.
Maroniche G A, Sagadín M, Mongelli V C, Truol G A, del Vas M. 2011. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virology Journal, 8, 308.
Newman J A. 2005. Climate change and the fate of cereal aphids in Southern Britain. Global Change Biology, 11, 940–944.
Pan Y, Shang Q, Fang K, Zhang J, Xi J. 2010. Down-regulated transcriptional level of Ace1 combined with mutations in Ace1 and Ace2 of Aphis gossypii are related with omethoate resistance. Chemico-Biological Interactions, 188, 553–557.
Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. 2004. Determination of stable reference genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.
Rajarapu S P, Mamidala P, Mittapalli O. 2012. Validation of reference genes for gene expression studies in the emerald ash borer (Agrilus planipennis). Insect Science, 19, 41–46.
Ranjan R. 2006. Economic impacts of pink hibiscus mealybug in florida and the united state. Stochastic Environmental Research and Risk Assessment, 20, 353–362.
Reavy B, Mayo M A. 2002. Persistent transmission of luteoviruses by aphids. Advances in Botanical Research, 36, 21–46.
Ruan W, Lai M. 2007. Actin, a reliable marker of internal control? Clinica Chimica Acta, 385, 1–5.
Riedell W E, Kieckhefer R W, Haley S D, Langham M C, Evenson P D. 1999. Winter wheat responses to bird cherry-oat aphids and barley yellow dwarf virus infection. Crop Science, 30, 158–163.
Shang F, Ding B Y, Xiong Y, Dou W, Wei D, Jiang H B, Wei D D, Wang J J. 2016. Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida. Scientific Reports, 6, 32099.
Shen G M, Jiang H B, Wang X N, Wang J J. 2010. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Molecular Biology, 1, 76.
Thellin O, Zorzi W, Lakaye B, De B B, Coumans B. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75, 291–295.
Vandesompele J, Preter K D, Pattyn F, Poppe B, Roy N V. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.1.
Yuan M, Lu Y H, Zhu X, Wan H, Shakeel M, Zhan S, Jin B R, Li J H. 2014. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) Using reverse-transcription quantitative PCR. PLoS ONE, 9, e86503.
Zhang B Z, Kong F C, Zeng X N. 2016. Gene expression of detoxification enzymes in insecticide-resistant and insecticide-susceptible Bemisia tabaci strains after diafenthiuron exposure. Journal of Agricultural Science, 154, 742–753.
[1] SHU Ben-shui, YU Hai-kuo, DAI Jing-hua, XIE Zi-ge, QIAN Wan-qiang, LIN Jin-tian. Stability evaluation of reference genes for real-time quantitative PCR normalization in Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2471-2482.
[2] REN Fang, ZHANG Zun-ping, FAN Xu-dong, HU Guo-jun, ZHANG Meng-yan, DONG Ya-feng. A sensitive SYBR Green RT-qPCR method for grapevine virus E and its application for virus detection in different grapevine sample types[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1834-1841.
[3] ZHENG Lu-ying, ZHANG Zhi-jun, ZHANG Jin-ming, LI Xiao-wei, HUANG Jun, LIN Wen-cai, LI Wei-di, LI Chuan-ren, LU Yao-bin. Selection of reference genes for RT-qPCR analysis of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) sex-dimorphic development[J]. >Journal of Integrative Agriculture, 2019, 18(4): 854-864.
[4] LUO Jing, MA Chao, LI Zhe, ZHU Bang-qin, ZHANG Jiang, LEI Chao-liang, JIN Shuang-xia, J. Joe Hull, CHEN Li-zhen. Assessment of suitable reference genes for qRT-PCR analysis in Adelphocoris suturalis[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2745-2757.
[5] LIANG Qiao-lan, WEI Lie-xin, XU Bing-liang, A. Calderón-Urrea, XIANG Dong. Study of viruses co-infecting white clover (Trifolium repens) in China[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1990-1998.
[6] HAN Pei-pei, QIN Lu, LI Yin-shui, LIAO Xiang-sheng, XU Zi-xian, HU Xiao-jia, XIE Li-hua, YU Chang-bing, WU Yan-feng, LIAO Xing. Identification of suitable reference genes in leaves and roots of rapeseed (Brassica napus L.) under different nutrient deficiencies[J]. >Journal of Integrative Agriculture, 2017, 16(04): 809-819.
No Suggested Reading articles found!