Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (11): 1804-1816    DOI: 10.1016/S1671-2927(00)8715
PHYSIOLOGY & BIOCHEMISTRY · TILLAGE · CULTIVATION Advanced Online Publication | Current Issue | Archive | Adv Search |
Factors Influencing Glucoraphanin and Sulforaphane Formation in Brassica Plants: AReview
 GU Zhen-xin, GUO Qiang-hui, GU Ying-juan
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Sulforaphane is a type of sulfur-containing isothiocyanates hydrolyzed from glucosinolates by myrosinase found in Brassica plants. Sulforaphane is a naturally occurring inducer of phase II enzymes in human and animal bodies to detoxify cancer-causing chemicals. Glucoraphanin is the precursor of sulforaphane and its content is greatly influenced by plant species and genotype, plant organs, pre-harvest factors, and post-harvest processing, thus sulforaphane formation is also directly influenced. Here, we review the formation mechanism of sulforaphane and the factors influencing sulforaphane formation. In the end, the future directions are also discussed.

Abstract  Sulforaphane is a type of sulfur-containing isothiocyanates hydrolyzed from glucosinolates by myrosinase found in Brassica plants. Sulforaphane is a naturally occurring inducer of phase II enzymes in human and animal bodies to detoxify cancer-causing chemicals. Glucoraphanin is the precursor of sulforaphane and its content is greatly influenced by plant species and genotype, plant organs, pre-harvest factors, and post-harvest processing, thus sulforaphane formation is also directly influenced. Here, we review the formation mechanism of sulforaphane and the factors influencing sulforaphane formation. In the end, the future directions are also discussed.
Keywords:  Brassica plant       glucosinolate       sulforaphane       glucoraphanin       influencing factor  
Received: 16 February 2012   Accepted:
Fund: 

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (31271912). The present study was also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Corresponding Authors:  Correspondence GU Zhen-xin, Tel/Fax: +86-25-84396293, E-mail: guzx@njau.edu.cn      E-mail:  guzx@njau.edu.cn

Cite this article: 

GU Zhen-xin, GUO Qiang-hui, GU Ying-juan. 2012. Factors Influencing Glucoraphanin and Sulforaphane Formation in Brassica Plants: AReview. Journal of Integrative Agriculture, 12(11): 1804-1816.

[1]Aires A, Rosa E, Carvalho R. 2006. Effect of nitrogen andsulfur fertilization on glucosinolates in the leaves androots of broccoli sprouts (Brassica oleracea var.italica). Journal of the Science of Food andAgriculture, 86, 1512-1516

[2]Bellostas N, Kachlicki P, Sørensen J C, Sørensen H. 2007.Glucosinolate profiling of seeds and sprouts of B.ol eracea var i e t i es used for food. Sc ient i aHorticulturae, 114, 234-242

[3]Bellostas N, Petersen I L, Sørensen J C, Sørensen H. 2008.A fast and gentle method for the isolation of myrosinasecomplexes from Brassicaceous seeds. Journal ofBiochemical and Biophysical Methods, 70, 918-925

[4]Bennett R N, Rosa E A S, Mellon F A, Kroon P A. 2006.Ontogenic profiling of glucosinolates, flavonoids, andother secondary metabolites in Eruca sativa (saladrocket), Diplotaxis erucoides (wall rocket), Diplotaxistenuifolia (wild rocket), and Bunias orientalis (Turkishrocket). Journal of Agricultural and Food Chemistry,54, 4005-4015

[5]Bernardi R, NegriA, Ronchi S, Palmieri S. 2000. Isolation ofthe epithiospecifier protein from oil-rape (Brassicanapus ssp. oleifera) seed and its characterization. FEBSLetters, 467, 296-298

[6]Blake-Kalff M MA, Harrison K R, Hawkesford M J, Zhao FJ,McGrath S P. 1998. Distribution of sulfur within oilseedrape leaves in response to sulfur deficiency duringvegetative growth. Plant Physiology, 118, 1337-1344

[7]Bones AM, Rossiter J T. 2006. The enzymic and chemicallyinduced decompos i t ion of glucos inolates .Phytochemistry, 67, 1053-1067

[8]Brown A F, Yousef G G, Jeffery E H, Klein B P, Wallig MA,Kushad M M, Juvik J A. 2002. Glucosinolate profiles inbroccoli: Variation in levels and implications in breedingfor cancer chemoprotection. Journal of the AmericanSociety for Horticultural Science, 127, 807-813

[9]Burmeister W P, Cottaz S, Driguez H, Iori R, Palmieri S,Henrissat B. 1997. The crystal structures of Sinapisalba myrosinase and a covalent glycosyl-enzymeintermediate provide insights into the substraterecognition and active-site machinery of an Sglycosidase.Structure, 5, 663-675

[10]Burow M, Markert J, Gershenzon J, Wittstock U. 2006a.Comparative biochemical characterization of nitrileforming proteins from plants and insects that altermyrosinase-catalyzed hydrolysis of glucosinolates.FEBS Journal, 273, 2432-2446

[11]Burow M, Müller R, Gershenzon J, Wittstock U. 2006b.Altered glucosinolate hydrolysis in geneticallyengineered Arabidopsis thaliana and its influence onthe larval development of Spodoptera littoralis. Journalof Chemical Ecology, 32, 2333-2349

[12]Burow M, Rice M, Hause B, Gershenzon J, Wittstock U.2007. Cell and tissue specific localization and regulationof the epithiospecifier protein in Arabidopsis thaliana.Plant Molecular Biology, 64, 173-185

[13]Cartea M E, Velasco P. 2008. Glucosinolates in Brassicafoods: bioavailability in food and significance for humanhealth. Phytochemisry Review, 7, 213-229

[14]Cartea M E, Velasco P, Obregón S, Padilla G, de Haro A.2008. Seasonal variation in glucosinolate content inBrassica oleracea crops grown in northwestern Spain.Phytochemistry, 69, 403-410

[15]Charron C S, Saxton AM, Sams C E. 2005. Relationship ofclimate and genotype to seasonal variation in theglucosinolate-myrosinase system. I. Glucosinolatecontent in ten cultivars of Brassica oleracea grown infall and spring seasons. Journal of the Science of Food and Agriculture, 85, 671-681

[16]Clossais-Besnard N, Larher F. 1991. Physiological role ofglucosinolates in Brassica napus. Concentration anddistribution pattern of glucosinolates among plantorgans during a complete life cycle. Journal of theScience of Food and Agriculture, 56, 25-38

[17]Cole R A. 1980. Volatile components produced duringontogeny of some cultivated crucifers. Journal of theScience of Food and Agriculture, 31, 549-557

[18]van Eylen D, Bellostas N, Strobel B W, Oey I, Hendrickx M,VanLoey A, Sørensen H, Sørensen J C. 2009. Influenceof pressure/temperature treatments on glucosinolateconversion in broccoli (Brassica oleraceae L. cvItalica) heads. Food Chemistry, 112, 646-653

[19]van Eylen D, Oey I, Hendrickx M, van Loey A. 2006.Temperature and pressure stability of mustard seed(Sinapis alba L.) myrosinase. Food Chemistry, 97, 263-271

[20]van Eylen D, Oey I, Hendrickx M, van Loey A. 2007.Kinetics of the stability of broccoli (Brassica oleraceacv. Italica) myrosinase and isothiocyanates in broccolijuice during pressure/temperature treatments. Journalof Agricultural and Food Chemistry, 55, 2163-2170

[21]van Dam N M, Tytgat T O G, Kirkegaard J A. 2009. Rootand shoot glucosinolates: a comparison of theirdiversity, function and interactions in natural andmanaged ecosystems. Phytochemistry Review, 8, 171-186

[22]Fahey J W, Zhang Y, Talalay P. 1997. Broccoli sprouts: anexceptionally rich source of inducers of enzymes thatprotect against chemical carcinogens. Proceedings ofthe National Academy of Sciences of the United Statesof America, 94, 10367-10372

[23]Fahey J W, Zalcmann T A, Talalay P. 2001. The chemicaldiversity and distribution of glucosinolates andisothiocyanates among plants. Phytochemistry, 56, 5-51

[24]Fahey J W, Wade K L, Stephenson K K, Chou F E. 2003.Separation and purification of glucosinolates from crudeplant homogenates by high-speed counter-currentchromatography. Journal of Chromatography (A), 996,85-93

[25]Falk K L, Tokuhisa J G, Gershenzon J. 2007. The effect ofsulfur nutrition on plant glucosinolate content:physiology and molecular mechanisms. Plant Biology,9, 573-581

[26]Farag M A, Motaal A A. 2010. Sulforaphane composition,cytotoxic and antioxidant activity of crucifer vegetables.Journal of Advanced Research, 1, 65-70

[27]Faulkner K, Mithen R, Williamson G. 1998. Selectiveincrease of the potent ial ant icar cinogen 4-methylsulphinylbutyl glucosinolate in broccoli.Carcinogenesis, 19, 605-609

[28]Fieldsend J, Milford G F J. 1994. Changes in glucosinolatesduring crop development in single- and double-lowgenotypes of winter oilseed rape (Brassica napus):Production and distribution in vegetative tissues anddeveloping pods during development and potential rolein the recycling of sulphur within the crop. Annals ofApplied Bioogy, 124, 531-542

[29]Foo H L, Gronning L M, Goodenough L, Bones A M,Danielsen B E, Whiting D A, Rossiter J A. 2000.Purification and characterisation of epithiospecifierprotein from Brassica napus: enzymic intramolecularsulphur addition within alkenyl thiohydroximatesderived from alkenyl glucosinolate hydrolysis. FEBSLetters, 468, 243-246

[30]Francis F, Lognay G, Wathelet J P, Haubruge E. 2001. Effectsof allelochemicals from first (Brassicaceae) and second(Myzus persicae and Brevicoryne brassicae) trophiclevels on Adalia bipunctata. Journal of ChemicalEcology, 27, 243-256

[31]Francisco M, Velasco P, Moreno A D, García-Viguera C,Cartea M E. 2010. Cooking methods of Brassica rapaaffect the preservation of glucosinolates, phenolics andvitamin C. Food Research International, 43, 1455-1463

[32]Grubb C D, Abel S. 2006. Glucosinolate metabolism and itscontrol. Trends in Plant Science, 11, 89-100

[33]Gu YJ, Guo Q H, Zhang L, Chen ZG, Han Y B, Gu ZX. 2012.Physiological and biochemical metabolism ofgerminating broccoli seeds and sprouts. Journal ofAgricultural and Food Chemistry, 60, 209-213

[34]Guerrero-Beltrán C E, Calderón-Oliver M, Pedraza-ChaverriJ, Chirino Y I. 2012. Protective effect of sulforaphaneagainst oxidative stress: recent advances. Experimentaland Toxicologic Pathology, 64, 503-508

[35]Guo R F, Yuan G F, Wang Q M. 2011. Effect of sucrose andmannitol on the accumulation of health-promotingcompounds and the activity of metabolic enzymes inbroccoli sprouts. Scientia Horticulturae, 128, 159-165

[36]Herr I, Büchler M W. 2010. Dietary constituents of broccoliand other cruciferous vegetables: implications forprevention and therapy of cancer. Cancer TreatmentReview, 36, 377-383

[37]Hüglund A S, Lenman M, Rask L. 1992. Myrosinase islocalized to the interior of myrosin grains and is notassociated to the surrounding tonoplast membrane.Plant Science, 85, 165-170

[38]Jeffery E H, Brown A F, Kurilich A C, Keck A S, MatusheskiN, Klein B P, Juvik J A. 2003. Variation in content ofbioactive components in broccoli. Journal of FoodComposition and Analysis, 16, 323-330

[39]Jensen C R, Mogensen V O, Mortensen G, Fieldsend J K,Milford G F J, Andersen M N, Thage J H. 1996. Seedglucosinolate, oil and protein contents of field-grownrape (Brassica napus L.) affected by soil drying andevaporative demand. Field Crops Research, 47, 93-105

[40]Jones A M, Bridges M, Bones A M, Cole R, Rossiter J T.2001. Purification and characterization of a non-plantmyrosinase from the cabbage aphid Brevicorynebrassicae (L.). Insect Biochemistry and Molecular .2012, CAAS. All rights reserved. Published by Elsevier Ltd.Biology, 31, 1-5

[41]Jones R B, Frisina C L,Winkler S, Imsic M, Tomkins R B.2010. Cooking method signi ficant ly ef fectsglucosinolate content and sulforaphane production inbroccoli florets. Food Chemistry, 123, 237-242

[42]Kestwal R M, Lin J C, Bagal-Kestwa D, Chiang B H. 2011.Glucosinolates fortification of cruciferous sprouts bysulphur supplementation during cultivation to enhanceanti-cancer activity. Food Chemistry, 126, 1164-1171

[43]Kim S J, Matsuo T, Watanabe M, Watanabe Y. 2002. Effectof ni t rogen and sulphur appl icat ion on theglucosinolate content in vegetable turnip rape (Brassicarapa L.). Soil Science and Plant Nutrition, 48, 43-49

[44]Kliebenstein D J, Kroymann J, Mitchell-Olds T. 2005. Theglucosinolate-myrosinase system in an ecological andevolutionary context. Current Opinion in PlantBiology, 8, 264-271

[45]Koprivova A, Suter M, Op den Camp R, Brunold C, KoprivaS. 2000. Regulation of sulphate assimilation by nitrogenin Arabidopsis. Plant Physiology, 122, 737-746

[46]Kushad M M, Brown A F, Kurilich A C, Juvik J A, Klein B,WalligMA, Jeffery E H. 1999. Variation of glucosinolatesin vegetable crops of Brassica oleracea. Journal ofAgricultural and Food Chemistry, 47, 1541-1548

[47]Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein D J,Gershenzon J. 2001. The arabidopsis epithiospecifierprotein promotes the hydrolysis of glucosinolates tonitriles and influences Trichoplusia in herbivory. ThePlant Cell, 13, 2793-2807

[48]Li S M, Schonhof I, Krumbein A, Li L, Stützel H, SchreinerM. 2007. Glucosinolate concentration in turnip(Brassica rapa ssp. rapifera L.) roots as affected bynitrogen and sulfur supply. Journal of Agriculturaland Food Chemistry, 55, 8452-8457

[49]Li X, Kushad M M. 2005. Purification and characterizationof myrosinase from horseradish (Armoracia rusticana)roots. Plant Physiology and Biochemistry, 43, 503-511

[50]Liang H, Yuan Q, Xiao Q. 2006. Effects of metal ions onmyrosinase activity and the formation of sulforaphanein broccoli seed. Journal of Molecular Catalysis (B:Enzymatic), 43, 19-22

[51]MacLeod A J, Rossiter J T. 1985. The occurrence andactivity of epithiospecifier protein in some Cruciferaeseeds. Phytochemistry, 24, 1895-1898

[52]Matusheski N V, Juvik J A, Jeffery E H. 2004. Heatingdecreases epithiospecifier protein activity andincreases sulforaphane formation in broccoli.Phytochemistry, 65, 1273-1281

[53]Matusheski N V, Swarup R, Juvik J A, Mithen R, BennettM, Jeffery E H. 2006. Epithiospecifier protein frombroccoli (Brassica oleracea L. ssp. italica) inhibitsformation of the anticancer agent sulforaphane.Journal of Agricultural and Food Chemistry, 54, 2069-2076

[54]Müller C, Sieling N. 2006. Effects of glucosinolate andmyros inase levels in Bras sica juncea on aglucosinolatesequestering herbivore and vice versa.Chemoecology, 16, 191-201

[55]Nakagawa K, Umeda T, Higuchi O, Tsuzuki T, Suzuki T,Miyazawa T. 2006. Evaporative light-scattering analysisof sulforaphane in broccoli samples: quality of broccoliproducts regarding sulforaphane contents. Journal ofAgricultural and Food Chemistry, 54, 2479-2483

[56]Nicoforova V, Freitag J, Kempa S, Adamik M, Hesse H,Hoefgen R. 2003. Transcriptome analysis of sulfurdepletion in Arabidopsis thaliana: interlacing ofbiosynthetic pathways provides response specificity.Plant Journal, 33, 633-650

[57]Nora M, Caroline M. 2007. Induction of plant responses bya sequestering insect: relationship of glucosinolateconcentration and myrosinase activity. Basic AppliedEcology, 8,13-25

[58]Ohtsuru M, Hata T. 1979. The interaction of L-ascorbicacid with the active center of myrosinase. BiochimicaBiophysica Acta, 567, 384-391

[59]Pereira F M, Rosa E, Fahey J W, Stephenson K K, CarvalhoR, Aires A. 2002. Influence of temperature and ontogenyon the levels of glucosinolates in broccoli (Brassicaoleracea var. italica) sprouts and their effect on theinduction of mammalian phase 2 enzymes. Journal ofAgricultural and Food Chemistry, 50, 6239-6244

[60]Pérez-Balibrea S, Moreno D A, García-Viguera C. 2008.Influence of light on health-promoting phytochemicalsof broccoli sprouts. Journal of the Science of Foodand Agriculture, 88, 904-910

[61]Pérez-Balibrea S, Moreno D A, García-Viguera C. 2010.Glucosinolates in broccoli sprouts (Brassica oleraceavar. italica) as conditioned by sulphate supply duringgermination. Journal of Food Science, 75, 673-677

[62]Pérez-Balibrea S, Moreno D A, García-Viguera C. 2011.Genotypic effects on the phytochemical quality of seedsand sprouts from commercial broccoli cultivars. FoodChemistry, 125, 348-354

[63]Petroski R J, Kwolek W F. 1985. Interaction of a fungalthioglucoside glucohydrolase and cruciferous plantepithiospecifier protein to form 1-cyanoepithioalkanes:impl i ca t ions of an a l los t er i c mechani sm.Phytochemistry, 24, 213-216

[64]Petroski R J, Tookey H L. 1982. Interactions of thioglucosideglucohydrolase and epithiospecifier protein ofcruciferous plants to form 1-cyanoepithioalkanes.Phytochemistry, 21, 1903-1905

[65]Rangkadilok N, Tomkins B, Nicolas M E, Premier R R,Bennett R N, Eagling D R, Taylor PW. 2002a. The effectof post-harvest and packaging treatments onglucoraphanin concentration in broccoli (Brassicaoleracea var. italica). Journal of Agricultural andFood Chemistry, 50, 7386-7391

[66]Rangkadilok N, Nicolas M E, Bennett R N, Premier R R,Eagling D R, Taylor P W J. 2002b. Developmentalchanges of sinigrin and glucoraphanin in three Brassica .2012, CAAS. All rights reserved. Published by Elsevier Ltd.species (Brassica nigra, Brassica juncea and Brassicaoleracea var. italica). Scientia Horticulturae, 96, 11-26

[67]Rangkadilok N, Nicolas M E, Bennett R N, Eagling D R,Premier R R, Taylor P W. 2004. The effect of sulfurfertilizer on glucoraphanin levels in broccoli (B. oleraceaL. var. italica) at different growth stages. Journal ofAgricultural and Food Chemistry, 52, 2632-2639

[68]Rosa E, Heaney R K, Rego F C, Fenwick G R. 1994. Thevariation of glucosinolate concentration during a singleday in young plants of Brassica oleracea var. acephalaand capitata. Journal of the Science of Food andAgriculture, 66, 457-463

[69]Rosa E A S, Heaney R K, Portas C AM, Fenwick G R. 1996.Changes in glucosinolate concentrations in Brassicacrops (Brassica oleracea and Brassica napus) throughgrowth seasons. Journal of the Science of Food andAgriculture, 71, 237-244

[70]Rosa E A S, Rodrigues P M F. 1998. The effect of light andtemperature on glucosinolate concentration in theleaves and roots of cabbage seedlings. Journal of theScience of Food and Agriculture, 78, 208-212

[71]Rosen C J, Fritz VA, Gardner G M, Hecht S S, Carmella S G,Kenney P M. 2005. Cabbage yield and glucosinolateconcentrations as affected by nitrogen and sulfurfertility. HortScience, 40, 1493-1498

[72]Schonhof I, Blankenburg D, Müller S, Krumbein A. 2007a.Sulfur and nitrogen supply influence growth, productappearance, and glucosinolate concentration ofbroccoli. Journal of Plant Nutrition and Soil Science,170, 65-72

[73]Schonhof I, Klaring H P, Krumbein A, Claussen W,Schreiner M. 2007b. Effect of temperature increaseunder low radiation conditions on phytochemicals andascorbic acid in greenhouse grown broccoli.Agriculture, Ecosystems and Environment, 119, 103-111

[74]Shen L, Su G, Wang X, Du Q, Wang K. 2010. Endogenousand exogenous enzymolysis of vegetable-sourcedglucosinolates and influencing factors. Food Chemistry,119, 987-994

[75]Shikita M, Fahey J W, Golden T R, Holtzclaw W D, TalalayP. 1999. An unusual case of ‘uncompetitive activation’by ascorbic acid: purification and kinetic properties ofa myrosinase from Raphanus sativus seedlings.Biochemical Journal, 341, 725-732

[76]Sivakumar G,AliboniA, Bacchetta L. 2007. HPLC screeningof anti-cancer sulforaphane from important EuropeanBrassica species. Food Chemistry, 104, 1761-1764

[77]Talalay P. 2000. Chemoprotection against cancer byinduction of phase 2 enzymes. Biofactors, 12, 5-11

[78]Textor S, Gershenzon J. 2009. Herbivore induction of theglucosinolate-myrosinase defense system: major trends,biochemical bases and ecological significance.Phytochemisty Review, 8, 149-170

[79]Travers-Martin N, Kuhlmann F, Muller C. 2008. Reviseddetermination of free and complexed myrosinaseactivities in plant extracts. Plant Physiology andBiochemistry, 46, 506-516

[80]Tripathi M K, Mishra A S. 2007. Glucosinolates in animalnutrition: a review. Animal Feed Science andTechnology, 132, 1-27

[81]Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B,Rowland I, Schrijver R D, Hansen M, Gerhauser C,Mithen R, et al. 2009. Glucosinolates in Brassicavegetables: The influence of the food supply chain onintake, bioavailability and human health. MolecularNutrtion and Food Research, 53, 219-265

[82]Wei J, Miao H, Wang Q. 2011. Effect of glucose onglucosinolates, antioxidants and metabolic enzymes inBrassica sprouts. Scientia Horticulturae, 129, 535-540

[83]Williams D J, Critchley C, Pun S, Mridusmita C J, O’Hare T.2010. Key role of Fe2+ in epithiospecifier protein activity.Journal of Agricultural and Food Chemistry, 58, 8512-8521

[84]Williams D J, Critchley C, Pun S, Nottingham S J, O’Hare T.2008. Epithiospecifier protein activity in broccoli: Thelink between terminal alkenyl glucosinolates andsulphoraphane nitrile. Phytochemistry, 69, 2765-2773

[85]Wittstock U, Halkier B A. 2002. Glucosinolate research inthe Arabidopsis era. Trends in Plant Science, 7, 263-270

[86]Wittstock U,Agerbirk N, Stauber E J, Olsen C E, Hippler M,Mitchell-Olds T, Gershenzon J, Vogel H. 2004.Successful herbivore attack due to metabolic diversionof a plant chemical defense. Proceedings of the NationalAcademy of Sciences of the United States of America,101, 4859-4864

[87]Yamada K, Hasegawa T, Minami E, Shibuya N, KosemuraS, Yamamura S, Hasegawa K. 2003. Induction ofmyrosinase gene expression and myrosinase activityin radish hypocotyls by phototropic stimulation.Journal of Plant Physiology, 160, 255-259

[88]Yuan G F, Wang X P, Guo R F, Wang Q M. 2010. Effect ofsalt stress on phenolic compounds, glucosinolates,myrosinase and antioxidant activity in radish sprouts.Food Chemistry, 121, 1014-1019

[89]Zhao F, Evans E J, Bilsborrow P E, Syers J K. 1994. Influenceof nitrogen and sulphur on the glucosinolate profile ofrapeseed (Brassica napus L.). Journal of the Scienceof Food and Agriculture, 64, 295-304
No related articles found!
No Suggested Reading articles found!