Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (23): 4993-4997.doi: 10.3864/j.issn.0578-1752.2025.23.014

• HYBRIDIZATION BREEDING AND GERMPLASM INNOVATION IN PAEONIA • Previous Articles     Next Articles

Hybridization Breeding and Germplasm Innovation in Paeonia

HE Dan(), ZHANG MingXing, ZHOU PingXi, HE SongLin*()   

  1. College of Landscape Architecture, Henan Agricultural University, Zhengzhou 450002
  • Received:2025-09-01 Accepted:2025-10-16 Online:2025-12-01 Published:2025-12-09
  • Contact: HE SongLin
[1]
王莲英, 袁涛, 王福, 李清道. 中国芍药科野生种迁地保护与新品种培育. 北京: 中国林业出版社, 2013.
WANG L Y, YUAN T, WANG F, LI Q D. The Ex-Situ Conservation Centre of Chinese Paeoniceae Wild Species and Cultivation of New Cultivars. Beijing: China Forestry Publishing House, 2013. (in Chinese)
[2]
马会萍, 彭正锋, 冀含乐, 王若晗, 姚俊巧, 马克义. 牡丹和芍药的组间远缘杂交育种研究进展. 北方园艺, 2025(18): 131-140.
MA H P, PENG Z F, JI H L, WANG R H, YAO J Q, MA K Y. Research progress on inter group distant hybrid breeding of tree peonies and herbaceous peonies. Northern Horticulture, 2025(18): 131-140. (in Chinese)
[3]
YANG Y, SUN M, LI S S, CHEN Q H, TEIXEIRA DA SILVA J A, WANG A J, YU X N, WANG L S. Germplasm resources and genetic breeding of Paeonia: A systematic review. Horticulture Research, 2020, 7: 107.

doi: 10.1038/s41438-020-0332-2
[4]
ZHAO D Q, AN H L, TAO J. Unlocking the molecular secrets of Paeonia plants: Advances in key gene mining and molecular breeding technology. Horticulture Research, 2025, 12(7): uhaf090.
[5]
贺丹, 尤啸龙, 何松林, 张明星, 张佼蕊, 华超, 王政, 刘艺平. 芍药胼胝质合成酶基因家族鉴定及PlCalS5功能分析. 中国农业科学, 2023, 56(16): 3183-3198. doi: 10.3864/j.issn.0578-1752.2023.16.011.
HE D, YOU X L, HE S L, ZHANG M X, ZHANG J R, HUA C, WANG Z, LIU Y P. Identification of callose synthetase gene family and functional analysis of PlCalS5 in Paeonia lactiflora. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198. doi: 10.3864/j.issn.0578-1752.2023.16.011. (in Chinese)
[6]
刘建鑫, 于晓南. 芍药与牡丹远缘杂交花粉萌发与花粉管生长行为观察. 北京林业大学学报, 2016, 38(9): 80-86.
LIU J X, YU X N. Ultrastructural investigations of Paeonia pollen activation and pollen tube growth after intersectional hybridization. Journal of Beijing Forestry University, 2016, 38(9): 80-86. (in Chinese)
[7]
ZHONG Y, DU M J, JI R Z, RONG Q, GUAN Z H, CHENG F Y. Cytogenetic analysis reveals a mechanism of compatibility in distant hybridization between tree peony and herbaceous peony. Euphytica, 2024, 220(4): 66.

doi: 10.1007/s10681-024-03326-1
[8]
蒋雨萌, 陈庭巧, 袁涛, 李清道. 牡丹新品种资源发展现状. 林草政策研究, 2023, 3(4): 36-42.
JIANG Y M, CHEN T Q, YUAN T, LI Q D. Current development in new variety resources of tree peony. Journal of Forestry and Grassland Policy, 2023, 3(4): 36-42. (in Chinese)
[9]
段晶晶, 罗建让, 李想, 张庆雨, 张延龙. 牡丹叶片红色消退过程中色素变化及相关基因表达分析. 西北植物学报, 2018, 38(10): 1885-1894.
DUAN J J, LUO J R, LI X, ZHANG Q Y, ZHANG Y L. Analysis of pigment changes and related gene expression during the red faded of tree peony leaves in spring. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(10): 1885-1894. (in Chinese)
[10]
郝青, 刘政安, 舒庆艳, 王亮生, 陈富飞. 中国首例芍药牡丹远缘杂交种的发现及鉴定. 园艺学报, 2008, 35(6): 853-858.
HAO Q, LIU Z A, SHU Q Y, WANG L S, CHEN F F. Identification of intersectional hybrid between section Moutan and section Paeonia found in China for the first time. Acta Horticulturae Sinica, 2008, 35(6): 853-858. (in Chinese)
[11]
王越岚. 牡丹的杂交育种及组间杂种育性的研究[D]. 北京: 北京林业大学, 2009.
WANG Y L. Cross-breeding in tree penoy and fertility research of intersectional hybrids[D]. Beijing: Beijing Forestry University, 2009. (in Chinese)
[12]
WATANABE K. Successful ovary culture and production of F1 hybrids and androgenic haploids in Japanese Chrysanthemum species. Journal of Heredity, 1977, 68(5): 317-320.

doi: 10.1093/oxfordjournals.jhered.a108844
[13]
叶雨晴, 孙丽萍, 张一驰, 李毅, 徐俊, 马琛悦, 牛雅静, 张蒙蒙, 戴思兰, 黄河. 不同倍性菊花远缘杂交亲和性及子代倍性研究. 园艺学报, 2024, 51(10): 2329-2342.
YE Y Q, SUN L P, ZHANG Y C, LI Y, XU J, MA C Y, NIU Y J, ZHANG M M, DAI S L, HUANG H. Studies on distant crossing compatibility and hybrid ploidy in different ploidy Chrysanthemums. Acta Horticulturae Sinica, 2024, 51(10): 2329-2342. (in Chinese)
[14]
ZHONG Y, DU M J, JI R Z, CHENG F Y. Cytological origination of the first found allotriploid tree peony, Paeonia × lemoinei ‘Oukan’ (AAB), reveled by molecular karyotype comparation. Scientia Horticulturae, 2024, 324: 112563.

doi: 10.1016/j.scienta.2023.112563
[15]
关紫恒, 季润泽, 荣琪, 徐雨杰, 钟原, 成仿云. 分子核型分析揭示芍药属组间杂种新倍性及其产生机制. 中国农业科学, 2025, 58(23): 4998-5012. doi: 10.3864/j.issn.0578-1752.2025.23.015.
GUAN Z H, JI R Z, RONG Q, XU Y J, ZHONG Y, CHENG F Y. The new ploidies of intersectional hybrids in Paeonia and their generation mechanisms revealed by molecular karyotype analysis. Scientia Agricultura Sinica, 2025, 58(23): 4998-5012. doi: 10.3864/j.issn.0578-1752.2025.23.015. (in Chinese)
[16]
HAO Q, AOKI N, KATAYAMA J, KAKO T, CHEON K S, AKAZAWA Y, KOBAYASHI N. Crossability of American tree peony ‘High Noon’ as seed parent with Japanese cultivars to breed superior cultivars. Euphytica, 2013, 191(1): 35-44.

doi: 10.1007/s10681-012-0853-3
[17]
CHANG Y T, HU T, ZHANG W B, ZHOU L, WANG Y, JIANG Z H. Transcriptome profiling for floral development in reblooming cultivar ‘High Noon’ of Paeonia suffruticosa. Scientific Data, 2019, 6(1): 217.

doi: 10.1038/s41597-019-0240-1
[18]
ZHAO Y J, YIN G S, GONG X. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation. Plant Diversity, 2023, 45(5): 513-522.

doi: 10.1016/j.pld.2022.07.002
[19]
LIU P, ZHANG L N, WANG X S, GAO J Y, YI J P, DENG R X. Characterization of Paeonia ostii seed and oil sourced from different cultivation areas in China. Industrial Crops and Products, 2019, 133: 63-71.

doi: 10.1016/j.indcrop.2019.01.054
[20]
FU Y Y, LIU F L, QI X Y, XU W J, YANG L P. Salt solution treatment plays an important role in overcoming pre-fertilization barriers during Asiatic and Oriental lily crossbreeding. Scientia Horticulturae, 2021, 288: 110343.

doi: 10.1016/j.scienta.2021.110343
[21]
GUO Y Z, ZHANG Y, WANG Y L, ZHAO G D, JIA W Q, HE S L. Interspecific hybridization barrier between Paeonia ostii and P. ludlowii. Plants, 2025, 14(7): 1120.

doi: 10.3390/plants14071120
[22]
DAI H F, JIANG B, ZHAO J S, LI J C, SUN Q M. Metabolomics and transcriptomics analysis of pollen germination response to low- temperature in pitaya (Hylocereus polyrhizus). Frontiers in Plant Science, 2022, 13: 866588.

doi: 10.3389/fpls.2022.866588
[23]
贺丹, 谢栋博, 张佼蕊, 何松林, 李朝梅, 郑云冰, 王政, 刘艺平, 栗燕, 逯久幸. 利用iTRAQ技术和转录组筛选芍药属远缘杂交不亲和基因. 中国农业科学, 2020, 53(6): 1234-1246. doi: 10.3864/j.issn.0578-1752.2020.06.015.
HE D, XIE D B, ZHANG J R, HE S L, LI C M, ZHENG Y B, WANG Z, LIU Y P, LI Y, LU J X. Selected related genes about incompatibility of distant hybridization in Paeonia by iTRAQ analysis and transcriptome. Scientia Agricultura Sinica, 2020, 53(6): 1234-1246. doi: 10.3864/j.issn.0578-1752.2020.06.015. (in Chinese)
[24]
YANG Y L, ZHANG X J, ZOU H D, CHEN J Y, WANG Z Y, LUO Z X, YAO Z F, FANG B P, HUANG L F. Exploration of molecular mechanism of intraspecific cross-incompatibility in sweetpotato by transcriptome and metabolome analysis. Plant Molecular Biology, 2022, 109(1): 115-133.

doi: 10.1007/s11103-022-01259-8
[25]
周平西, 王警琨, 尤啸龙, 华超, 郭浩楠, 张明星, 刘艺平贺丹, 何松林. SnRK2.6对芍药远缘杂交花粉管生长的影响及对ABA的响应. 中国农业科学, 2025, 58(15): 3081-3096. doi: 10.3864/j.issn.0578-1752.2025.15.011.
ZHOU P X, WANG J K, YOU X L, HUA C, GUO H N, ZHANG M X, LIU Y P, HE D, HE S L. SnRK2.6 regulates pollen tube growth and ABA response in distant hybridization in Paeonia lactiflora. Scientia Agricultura Sinica, 2025, 58(15): 3081-3096. doi: 10.3864/j.issn.0578-1752.2025.15.011. (in Chinese)
[26]
贾文庆, 和亚琳, 段慧琳, 于迎月, 王政, 赵国栋, 郭英姿, 王二强, 穆金艳, 张焱, 等. 基于转录组和代谢组分析凤丹×大花黄牡丹远缘杂交受精前障碍发生机制. 中国农业科学, 2025, 58(23): 5013-5030. doi: 10.3864/j.issn.0578-1752.2025.23.016.
JIA W Q, HE Y L, DUAN H L, YU Y Y, WANG Z, ZHAO G D, GUO Y Z, WANG E Q, MU J Y, ZHANG Y, et al. Integrated transcriptomic and metabolomic analysis of pre-fertilization barriers in distant hybridization of Paeonia ostii×P. ludlowii. Scientia Agricultura Sinica, 2025, 58(23): 5013-5030. doi: 10.3864/j.issn.0578-1752.2025.23.016. (in Chinese)
[27]
ALVAREZ-BUYLLA E R, BENÍTEZ M, CORVERA-POIRÉ A, CHAOS CADOR Á, DE FOLTER S, DE BUEN A G, GARAY-ARROYO A, GARCÍA-PONCE B, JAIMES-MIRANDA F, PÉREZ-RUIZ R V, et al. Flower development. The Arabidopsis Book, 2010, 8: e0127.
[28]
THEIßEN G, MELZER R, RÜMPLER F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution. Development, 2016, 143(18): 3259-3271.

doi: 10.1242/dev.134080 pmid: 27624831
[29]
ZHANG A J, HE H B, LI Y, WANG L X, LIU Y X, LUAN X C, WANG J X, LIU H J, LIU S Y, ZHANG J, et al. MADS-box subfamily gene GmAP3 from Glycine max regulates early flowering and flower development. International Journal of Molecular Sciences, 2023, 24(3): 2751.

doi: 10.3390/ijms24032751
[30]
CHEN X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025.

doi: 10.1126/science.1088060
[31]
许朵朵, 杜倩倩, 赵理想, 栗燕, 黄淦, 李永华, 逯久幸. 牡丹AP2/ERF转录因子的全基因组分析. 中国农业科学, 2025, 58(23): 5031-5045. doi: 10.3864/j.issn.0578-1752.2025.23.017.
XU D D, DU Q Q, ZHAO L X, LI Y, HUANG G, LI Y H, LU J X. Genome-wide analysis of AP2/ERF transcription factors in tree peony. Scientia Agricultura Sinica, 2025, 58(23): 5031-5045. doi: 10.3864/j.issn.0578-1752.2025.23.017. (in Chinese)
[32]
裴颜龙, 洪德元. 卵叶牡丹:芍药属一新种. 植物分类学报, 1995, 33(1): 91-93.
PEI Y L, HONG D Y. Paeonia qiui: A new woody species of Paeonia from Hubei, China. Acta Phytotaxonomica Sinica, 1995, 33(1): 91-93. (in Chinese)
[33]
韩欣. 牡丹杂交亲本选择及F1代遗传表现[D]. 北京: 北京林业大学, 2014.
HAN X. Studies on parental selection of tree peonies and genetic performance of several traits in F1 hybrids[D]. Beijing: Beijing Forestry University, 2014. (in Chinese)
[34]
李琴琴, 董山榕, 罗建让, 张延龙. 卵叶牡丹PqDFRPqANS及启动子克隆与功能分析. 园艺学报, 2024, 51(6): 1256-1272.
LI Q Q, DONG S R, LUO J R, ZHANG Y L. Cloning and functional analysis of PqDFR and PqANS genes and its promoters from Paeonia qiui. Acta Horticulturae Sinica, 2024, 51(6): 1256-1272. (in Chinese)
[35]
戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49(3): 529-542. doi: 10.3864/j.issn.0578-1752.2016.03.011.
DAI S L, HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 2016, 49(3): 529-542. doi: 10.3864/j.issn.0578-1752.2016.03.011. (in Chinese)
[36]
魏晨曦, 董山榕, 王小满, 罗建让. 基于叶色表型和花青素积累特征的牡丹红色叶性状解析. 中国农业科学, 2025, 58(23): 5046-5056. doi: 10.3864/j.issn.0578-1752.2025.23.018.
WEI C X, DONG S R, WANG X M, LUO J R. Analysis of spring-colored leaf trait in tree peony based on leaf color phenotypes and anthocyanin accumulation characteristics. Scientia Agricultura Sinica, 2025, 58(23): 5046-5056. doi: 10.3864/j.issn.0578-1752.2025.23.018. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!