Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4440-4448.doi: 10.3864/j.issn.0578-1752.2020.21.012
• PLANT PROTECTION • Previous Articles Next Articles
LIN WenZhong(),WU Ran,JIN Jing,QIU Ping,ZHANG Jie,WU ZuJian(
),DU ZhenGuo(
)
[1] | 谢联辉, 林奇英, 魏太云, 吴祖建. 水稻病毒 北京: 科学出版社, 2016. |
XIE L H, LIN Q Y, WEI T Y, WU Z J. Rice Viruses. Beijing: Science Press, 2016. (in Chinese) | |
[2] | 周益军. 水稻条纹叶枯病. 南京: 江苏科学技术出版社, 2010. |
ZHOU Y J. Rice Stripe Virus Disease. Nanjing: Jiangsu Science and Technology Press, 2010. (in Chinese) | |
[3] |
OLSCHEWSKI S, CUSACK S, ROSENTHAL M. The cap-snatching mechanism of Bunyaviruses. Trends in Microbiology, 2020,28(4):293-303.
doi: 10.1016/j.tim.2019.12.006 pmid: 31948728 |
[4] |
RAMANATHAN A, ROBB G B, CHAN S H. mRNA capping: Biological functions and applications. Nucleic Acids Research, 2016,44(16):7511-7526.
pmid: 27317694 |
[5] |
DECROLY E, FERRON F, LESCAR J, CANARD B. Conventional and unconventional mechanisms for capping viral mRNA. Nature Reviews Microbiology, 2012,10(1):51-65.
pmid: 22138959 |
[6] | DE VLUGT C, SIKORA D, PELCHAT M. Insight into influenza: A virus cap-snatching. Viruses, 2018,10(11):641. |
[7] |
WALKER A P, FODOR E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends in Microbiology, 2019,27(5):398-407.
pmid: 30642766 |
[8] |
GARCÍA-SASTRE A. Snatch-and-grab inhibitors to fight the flu. Cell, 2019,177(6):1367.
pmid: 31150614 |
[9] | FALK B W, TSAI J H. Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology, 1998,36:139-163. |
[10] | 张恒木, 孙焕然, 王华弟, 陈剑平. 水稻条纹病毒分子生物学研究进展. 植物保护学报, 2007,34(4):436-440. |
ZHANG H M, SUN H R, WANG H D, CHEN J P. Advances in the studies of molecular biology of rice stripe virus. Acta Phytophylacica Sinica, 2007,34(4):436-440. (in Chinese) | |
[11] | XIONG R Y, WU J X, ZHOU Y J, ZHOU X P. Identification of a movement protein of the tenuivirus rice stripe virus. Journal of Virology, 2008,82(24):12304-12311. |
[12] | SUN F, YUAN X, ZHOU T, FAN Y J, ZHOU Y J. Arabidopsis is susceptible to rice stripe virus infections. Journal of Phytopathology, 2011,159(11/12):767-772. |
[13] | SHIMIZU T, TORIYAMA S, TAKAHASHI M, AKUTSU K, YONEYAMA K. Non-viral sequences at the 5′ termini of mRNAs derived from virus-sense and virus complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. Journal of General Virology, 1996,77(3):541-546. |
[14] | YAO M, ZHANG T Q, ZHOU T, ZHOU Y J, ZHOU X P, TAO X R. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. Journal of General Virology, 2012,93(1):194-202. |
[15] |
GARCIN D, LEZZI M, DOBBS M, ELLIOTT R M, SCHMALJOHN C, KANG C Y, KOLAKOFSKY D. The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. Journal of Virology, 1995,69(9):5754-5762.
doi: 10.1128/JVI.69.9.5754-5762.1995 pmid: 7637020 |
[16] |
LIU X J, JIN J, QIU P, GAO F L, LIN W Z, XIE G H, HE S M, LIU S M, DU Z G, WU Z J. Rice stripe tenuivirus has a greater tendency to use the prime-and-realign mechanism in transcription of genomic than in transcription of antigenomic template RNAs. Journal of Virology, 2018,92(1):e01414-17.
doi: 10.1128/JVI.01414-17 pmid: 29046442 |
[17] |
LIN W Z, WU R, QIU P, JIN J, YANG Y Y, WANG J L, LIN Z L, ZHANG J, WU Z J, DU Z G. A convenientin vivo cap donor delivery system to investigate the cap snatching of plant bunyaviruses. Virology, 2020,539:114-120.
pmid: 31710910 |
[18] |
RAO P, YUAN W, KRUG R M. Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. The EMBO Journal, 2003,22(5):1188-1198.
pmid: 12606583 |
[19] |
NOSHI T, KITANO M, TANIGUCHI K, YAMAMOTO A, OMOTO S, BABA K, HASHIMOTO T, ISHIDA K, KUSHIMA Y, HATTORI K, KAWAI M, YOSHIDA R, KOBAYASHI M, YOSHINAGA T, SATO A, OKAMATSU M, SAKODA Y, KIDA H, SHISHIDO T, NAITO A. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral Research, 2018,160:109-117.
doi: 10.1016/j.antiviral.2018.10.008 pmid: 30316915 |
[20] | KOMODA K, ISHIBASHI K, KAWAMURA-NAGAYA K, ISHIKAWA M. Possible involvement of eEF1A in tomato spotted wilt virus RNA synthesis. Virology, 2014,468/470:81-87. |
[21] | LEAHY M B, DESSENS J T, PRITLOVE D C, NUTTALL P A. The Thogoto orthomyxovirus cRNA promoter functions as a panhandle but does not stimulate cap snatching in vitro. Journal of General Virology, 1998,79(3):457-460. |
[22] |
VAN KNIPPENBERG I, LAMINE M, GOLDBACH R, KORMELINK R. Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology, 2005,335(1):122-130.
doi: 10.1016/j.virol.2005.01.041 pmid: 15823611 |
[23] |
GEERTS-DIMITRIADOU C, ZWART M P, GOLDBACH R, KORMELINK R. Base-pairing promotes leader selection to prime in vitro influenza genome transcription. Virology, 2011,409(1):17-26.
doi: 10.1016/j.virol.2010.09.003 pmid: 21051068 |
[24] |
TE VELTHUIS A J W, OYMANS J. Initiation, elongation and realignment during influenza virus mRNA synthesis. Journal of Virology, 2018,92(3):e01775-17.
doi: 10.1128/JVI.01775-17 pmid: 29142123 |
[25] |
BARR J N. Bunyavirus mRNA synthesis is coupled to translation to prevent premature transcription termination. RNA, 2007,13(5):731-736.
doi: 10.1261/rna.436607 pmid: 17400818 |
[26] | VAN KNIPPENBERG I, GOLDBACH R, KORMELINK R. In vitro transcription of tomato spotted wilt virus is independent of translation. Journal of General Virology, 2004,85(5):1335-1338. |
[27] |
WANG Q, LIU Y Q, HE J, ZHENG X M, HU J L, LIU Y L, DAI H M, ZHANG Y X, WANG B X, WU W X, et al. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nature Communications, 2014,5:4768.
doi: 10.1038/ncomms5768 pmid: 25203424 |
[28] |
VAN KNIPPENBERG I, GOLDBACH R W, KORMELINK R. Purified tomato spotted wilt virus particles support both genome replication and transcriptionin vitro. Virology, 2002,303(2):278-286.
doi: 10.1006/viro.2002.1632 pmid: 12490389 |
[29] | KAKUTANI T, HAYANO Y, HAYASHI T, MINOBE Y. Ambisense segment 3 of rice stripe virus: The first instance of a virus containing two ambisense segments. Journal of General Virology, 1991,72(2):465-468. |
[30] | KAKUTANI T, HAYANO Y, HAYASHI T, MINOBE Y. Ambisense segment 4 of rice stripe virus: Possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). Journal of General Virology, 1990,71(7):1427-1432. |
[31] | TORIYAMA S. An RNA-dependent RNA polymerase associated with the filamentous nucleoproteins of rice stripe virus. Journal of General Virology, 1986,67(7):1247-1255. |
[32] |
NGUYEN M, RAMIREZ B C, GOLDBACH R, HAENNI A L. Characterization of the in vitro activity of the RNA-dependent RNA polymerase associated with the ribonucleoproteins of rice hoja blanca tenuivirus. Journal of Virology, 1997,71(4):2621-2627.
doi: 10.1128/JVI.71.4.2621-2627.1997 pmid: 9060614 |
[33] |
KOPPSTEIN D, ASHOUR J, BARTEL D P. Sequencing the cap- snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Research, 2015,43(10):5052-5064.
doi: 10.1093/nar/gkv333 pmid: 25901029 |
[34] | 和思淼. 水稻条纹病毒mRNA 5′端“额外AC”的来源研究[D]. 福州: 福建农林大学, 2019. |
HE S M. Understanding the origin of the extra dinucleotide AC at the 5′ termini of rice stripe tenuivirus mRNAs[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese) | |
[35] |
LIN W Z, QIU P, JIN J, LIU S M, ISLAM S U, YANG J G, ZHANG J, KORMELINK R, DU Z G, WU Z J. The cap snatching of segmented negative sense RNA viruses as a tool to map the transcription start sites of heterologous co-infecting viruses. Frontiers in Microbiology, 2017,8:2519.
doi: 10.3389/fmicb.2017.02519 pmid: 29312219 |
No related articles found! |
|