Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4430-4439.doi: 10.3864/j.issn.0578-1752.2020.21.011

• PLANT PROTECTION • Previous Articles     Next Articles

Prediction of Suitable Area and Risk Analysis for Citrus Target Spot

XU YongHong1(),CHEN Li2,TANG Song3,DING DeKuan4,YANG YuHeng1()   

  1. 1College of Plant Protection, Southwest University, Chongqing 400715
    2Wanzhou Plant Protection Station, Chongqing 404000
    3Liangping Agricultural Technical Service Center, Chongqing 405200
    4Chenggu Fruit Industry Technical Guidance Station, Chenggu 723200, Shaanxi
  • Received:2020-03-19 Accepted:2020-04-22 Online:2020-11-01 Published:2020-11-11
  • Contact: YuHeng YANG E-mail:1506262894@qq.com;yyh023@swu.edu.cn

Abstract:

【Objective】Citrus target spot, a new disease reported in China, has caused serious economic losses in the local orchards. Therefore, it is necessary to carry out the prediction of the suitable area and risk analysis of the disease, so as to take timely and effective control measures for the disease, and finally achieve the purpose of reducing the risk level and preventing the spread of this disease.【Method】Combined the environmental data and the occurrence and distribution data of the disease areas, MaxEnt ecological niche models were used to predict the potential suitable area of citrus target spot pathogen (Pseudofabraea citricarpa) in China. The area under the curve (AUC) of receiver operating characteristic (ROC) was used to evaluate the accuracy of the prediction model, and the relationship between the climate factor and the distribution probability was obtained using the regularized training gain method. Additionally, the theory of pest risk analysis was used to explore the risk analysis system and calculation method of citrus target spot based on the prescribed procedures of pest risk analysis. Qualitative analysis of the evaluation indicators was conducted to quantify the evaluation values. Based on establishing a comprehensive evaluation model, the risk hazard value of citrus target spot was calculated, and finally the risk hazard value of the disease was evaluated.【Result】The average AUC value of the predicted result of MaxEnt model was 0.998, which indicated that the predicted result was highly accurate. The area of potential suitable areas for P. citricarpa accounts for 12.19% of the national area. Among them, the areas of high suitability, medium suitability, and low suitability account for about 2.85%, 3.99%, and 5.35% of the national area, respectively. The high and middle suitable areas are mainly concentrated in the citrus dominant area in the upper and middle reaches of the Yangtze River. Among them, high suitable area is mainly concentrated in Sichuan, Chongqing, southern Shaanxi, and a few areas in Guizhou and Hubei. The middle and low suitable areas are the peripheral expansion of the high suitable area. The analysis results of the importance of environmental variables obtained by the MaxEnt model normalization training gain knife-cut method show that the mean temperature in the coldest quarter (Bio11), the mean temperature in the driest quarter (Bio9), and the minimum temperature of the coldest month (Bio6) are the key factors affecting the distribution of P. citricarpa, which means that there is a high possibility of citrus target spot in low temperature and dry and cold seasons. The risk analysis finally created a multi-index comprehensive evaluation system of 5 criterion layers and 13 indicator layers, and quantitative and qualitative analyses of each indicator layer. The risk index value (R) of the disease was up to 2.08. This disease has the greatest potential harm to the two major citrus-producing areas in the Yangtze River Basin and in western Hubei and western Hunan.【Conclusion】In view of the high risk of citrus target spot, it is necessary to establish a monitoring system as soon as possible, and take effective control measures against the disease to prevent the spread between the citrus dominant area and adjacent citrus-producing areas in the upper and middle reaches of the Yangtze River.

Key words: citrus target spot, Pseudofabraea citricarpa, national classification of suitable grades, multi-index comprehensive evaluation method, risk analysis

Fig. 1

Symptoms of citrus target spot A:leaf spot;B:infected stem;C:infected xylem;D:fruit spot;E:all leaves fall。Arrows show the infected parts of citrus trees"

Table 1

Descriptions of climate data variables"

代码Code 描述Description
Bio1 年均温Annual mean temperature
Bio2 昼夜温差月均值Mean diurnal range
Bio3 等温性Isothermality
Bio4 温度季节性变化的标准差Temperature seasonality
Bio5 最暖月最高温Maximum temperature of the warmest month
Bio6 最冷月最低温Minimum temperature of the coldest month
Bio7 年均温变化范围Temperature annual range
Bio8 最湿季度平均温度Mean temperature of the wettest quarter
Bio9 最干季度平均温度Mean temperature of the driest quarter
Bio10 最暖季度平均温度Mean temperature of the warmest quarter
Bio11 最冷季度平均温度Mean temperature of the coldest quarter
Bio12 年均降水量Annual precipitation
Bio13 最湿月降水量Precipitation of wettest month
Bio14 最干月降水量Precipitation of driest month
Bio15 降水量变异系数Precipitation seasonality
Bio16 最湿季度降水量Precipitation of the wettest quarter
Bio17 最干季度降水量Precipitation of the driest quarter
Bio18 最暖季度降水量Precipitation of the warmest quarter
Bio19 最冷季度降水量Precipitation of the coldest quarter

Table 2

Potential suitable areas of citrus target spot in China"

适生等级
Suitable level
潜在适生区
Potential suitable area
适生区所属柑橘优势区
Citrus-producing advantage area
高适生区
High suitable area
四川东部、重庆、陕西南部、贵州北部、湖北西北部
Eastern Sichuan, Chongqing, Southern Shaanxi, Northern Guizhou, Northwest Hubei
长江中上游柑橘优势区
The upper and middle reaches of the Yangtze River
中适生区
Medium suitable area
贵州大部、湖北大部、四川东南部、云南东北局部
Most of Guizhou and Hubei, Southeast Sichuan, part of Northeast Yunnan
湖北西部-湖南西部柑橘优势区
Western Hubei-Western Hunan
低适生区
Low suitable area
河南大部、江苏大部、山东大部,安徽、山西、河北、湖南及云南局部
Most of Henan, Jiangsu and Shandong, parts of Anhui, Shanxi, Hebei, Hunan, and Yunnan

Fig. 2

ROC curve of MaxEnt model for predicting results of P. citricarpa"

Fig. 3

Jackknife results of regularized training gain"

Fig. 4

Multi-index comprehensive evaluation system of citrus target spot"

Table 3

Index score table for risk analysis of citrus target spot"

评价指标
Evaluation index
评判标准
Criterion of evaluation
赋分原因
Reason for scoring
赋分值
Score
P1 分布面积
Distribution area
0 P1=3 在国内分布最大占比0.3%
The largest domestic distribution accounts for 0.3%
P1=2
0-20% P1=2
20%-50% P1=1
>50% P1=0
P21 产量或品质损失
Loss of yield or quality
>50% P21=3 柑橘轮斑病造成的产量损失难以统计,用其危害程度进行间接评价
The yield loss caused by citrus target spot is difficult to count, and its damage is used for indirect evaluation
P21=3
20%-50% P21=2
1%-5% P21=1
0 P21=0
P22 可传带检疫性有害生物数量
Number of quarantine pests that can be carried
≥3 P22=3 不传带任何检疫性有害生物
Does not carry any quarantine pest
P22=0
2 P22=2
1 P22=1
0 P22=0
P31 受害栽培寄主
Variety of damaged hosts
≥10 P31=3 目前受该病原侵染的栽培寄主仅限柑橘
The host currently infected by the pathogen is only citrus
P31=1
5-9 P31=2
1-4 P31=1
0 P31=0
P32 寄主种植面积
Planting area of damaged host
>35×105 hm2 P32=3 城固、万州、安康柑橘总种植面积4.47×104 hm2
The citrus planting in the affected area is 4.47×104 hm2
P32=1
(15—35)×105 hm2 P32=2
<15×105 hm2 P32=1
0 P32=0
P33 寄主应用价值、出口创汇等方面
Host economic values
P33=3,2,1,0 柑橘是国际贸易第一大水果,是重要的经济作物
Citrus is the largest fruit in international trade and an important cash crop
P33=3
P41 经常被截获Often intercepted P41=3 截至目前,柑橘轮斑病从未被截获
Citrus target spot has never been intercepted until now
P41=1
偶尔被截获Occasionally intercepted P41=2
从未被截获或历史上只截获几次
Never intercepted or intercepted only a few times
P41=1
P42 存活率
Survival rate
>40% P42=3 运输过程中柑橘轮斑病不会被破坏,仍继续存在
Citrus target spot cannot be destroyed during transportation
P42=3
10%-40% P42=2
0-10% P42=1
0 P42=0
P43 适生区范围
Suitable area
>50% P43=3 适生区约占全国总面积的12.19%,即在全国12.19%的地区适宜生存
Suitable area accounts for 12.19% of total area of China
P43=1
25%-50% P43=2
0-25% P43=1
0 P43=0
P44 传播力
Transmissibility
强Strong P44=3 自2006年在城固发病后,10年左右才传至万州,认为其传播力很弱
Citrus target spot has only spread from Chenggu to Wanzhou in about 10 years, and it is believed that its spread is very weak
P44=1
中Medium P44=2
弱Weak P44=1
P51 检验鉴定方法
Identification method
可靠性低,耗时长
Low reliability and time-consuming
P51=3 目前柑橘轮斑病菌的鉴定检验耗时较长,采用鉴定技术复杂
The identification of the pathogen takes a long time and the identification technology is complicated
P51=2
非常可靠且快速简便
High reliability and time-saving
P51=0
介于之间Medium P51=2,1
P52 除害率
Removal rate
几乎完全不能除害
Almost impossible to eliminate
P52=3 病害一经发生,尽管采取防治除害方法,病害依旧有部分肆意,不能完全消除病害
Once the disease occurs, the disease cannot be completely eliminated
P52=2
<50% P52=2
50%-100% P52=1
100% P52=0
P53 防治效果
Control effect
差Poor P53=3 防治措施采取后,见效甚微
Control measures have little effect
P53=3
显著Significant P53=0
介于之间Medium P53=2,1
[1] 郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年——柑橘. 果树学报, 2019,36(10):1264-1272.
GUO W W, YE J L, DENG X X. Fruit scientific research in New China in the past 70 years:Citrus. Journal of Fruit Science, 2019,36(10):1264-1272. (in Chinese)
[2] WU G A, TEROL J, IBANEZ V, LÓPEZ-GARCÍA A, PÉREZ-ROMÁN E, BORREDÁ C, DOMINGO C, TADEO F R, CARBONELL- CABALLERO J, ALONSO R, CURK F, DU D, OLLITRAULT P, ROOSE M L, DOPAZO J, GMITTER F G, ROKHSAR D S, TALON M. Genomics of the origin and evolution of Citrus. Nature, 2018,554(7692):311-316.
pmid: 29414943
[3] 朱丽. 五种柑橘真菌性病害病原鉴定[D]. 杭州: 浙江大学, 2012.
ZHU L. Identification of five fungal pathogens causing Citrus diseases in China[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[4] CHEN C, VERKLEY G J M, SUN G Y, GROENEWALD J Z, CROUS P W. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biology, 2016,120(11):1291-1322.
doi: 10.1016/j.funbio.2015.09.013 pmid: 27742091
[5] YANG Y, HU J, CHEN F, DING D, ZHOU C. Development of a SCAR marker-based diagnostic method for the detection of the citrus target spot pathogen Pseudofabraea citricarpa. BioMed Research International, 2018,2018:7128903.
pmid: 29967783
[6] ZHU L, WANG X H, HUANG F, ZHANG J Z, LI H Y, DING D K, HYDE K D. A destructive new disease of citrus in China caused by Cryptosporiopsis citricarpa sp. nov. Plant Disease, 2012,96(6):804-812.
pmid: 30727352
[7] YANG Y, FANG A, YU Y, BI C, ZHOU C. Integrated transcriptomic and secretomic approaches reveal critical pathogenicity factors in Pseudofabraea citricarpa inciting citrus target spot. Microbial Biotechnology, 2019,12(6):1260-1273.
doi: 10.1111/1751-7915.13440 pmid: 31162831
[8] ELITH J, PHILLIPS S J, HASTIE T, DUDÍK M, CHEE Y E, YATES C J. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011,17(1):43-57.
[9] 朱耿平, 原雪姣, 范靖宇, 王梦琳. Maxent模型参数设置对其所模拟物种地理分布和生态位的影响——以茶翅蝽为例. 生物安全学报, 2018,27(2):118-123.
ZHU G P, YUAN X J, FAN J Y, WANG M L. Effects of model parameters in MaxEnt modeling of ecological niche and geographic distribution: Case study of the brown marmorated stink bug, Halyomorpha haly. Journal of Biosafety, 2018,27(2):118-123. (in Chinese)
[10] ABDELAAL M, FOIS M, FENU G, BACCHETTA G. Using MaxEnt modeling to predict the potential distribution of the endemic plantRosa arabica Crép. in Egypt. Ecological Informatics, 2019,50:68-75.
[11] ZHANG J J, JIANG F, LI G Y, QIN W, LI S Q, GAO H M, CAI Z Y, LIN G H, ZHANG T Z. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 2019,9(11):6643-6654.
pmid: 31236249
[12] 马晓光, 沈佐锐. 植保有害生物风险分析理论体系的探讨. 植物检疫, 2003,17(2):70-74.
MA X G, SHEN Z R. A theoretical approach to the system of pest risk analysis in plant protection. Plant Quarantine, 2003,17(2):70-74. (in Chinese)
[13] 蒋青, 梁忆冰, 王乃扬, 姚文国. 有害生物危险性评价的定量分析方法研究. 植物检疫, 1995,9(4):208-211.
JIANG Q, LIANG Y B, WANG N Y, YAO W G. Study on the quantitative analysis method for the risk assessment of harmful organisms. Plant Quarantine, 1995,9(4):208-211. (in Chinese)
[14] 李娟, 赵宇翔, 陈小平, 阎合, 宋玉双. 林业有害生物风险分析指标体系及赋分标准的探讨. 中国森林病虫, 2013,32(3):10-15.
LI J, ZHAO Y X, CHEN X P, YAN H, SONG Y S. Discussion on the forest pest risk analysis index system and standard of natural endowments. Forest Pest and Disease, 2013,32(3):10-15. (in Chinese)
[15] 梁小松, 徐刘平, 张呈伟, 陆苗, 李健. 改良的有害生物风险评价体系在定量评价检疫杂草风险中的应用. 杂草科学, 2014,32(4):45-48.
LIANG X S, XU L P, ZHANG C W, LU M, LI J. Application of an improved pest risk analysis (PRA) to quantitative evaluation of a risk of quarantine weeds. Weed Science, 2014,32(4):45-48. (in Chinese)
[16] 林司曦, 丁晓磊, 叶建仁, 赵琪. 李痘病毒在中国的入侵风险评估. 南京林业大学学报(自然科学版), 2016,40(6):187-192.
LIN S X, DING X L, YE J R, ZHAO Q. Invasion risk analysis of plum pox virus to China. Journal of Nanjing Forestry University (Natural Science Edition), 2016,40(6):187-192. (in Chinese)
[17] YANG M, LONG Q, LI W, WANG Z, HE X, WANG J, WANG X, XIONG H, GUO C, ZHANG G, LUO B, QIU J, CHEN X, ZHANG F, SHI X, ZHANG Y. Mapping the environmental cost of a typical citrus-producing county in China: Hotspot and optimization. Sustainability, 2020,12(5):1827.
[18] 马平, 杜宇, 李正跃, 蒋小龙. 云南外来入侵有害生物多指标综合评价体系的建立. 植物保护, 2008,34(3):99-104.
MA P, DU Y, LI Z Y, JIANG X L. Establishment of comprehensive evaluation index system for invasive alien pests linked with plants and plant products in Yunnan. Plant Protection, 2008,34(3):99-104. (in Chinese)
[19] BYEON D, JUNG S, LEE W H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity, 2018,11(3):325-333.
[20] JUNG J M, LEE W H, JUNG S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomological Research, 2016,46(4):223-235.
[21] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006,190(3/4):231-259.
[22] PHILLIPS S J, DUDIK M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 2008,31(2):161-175.
[23] 王雨生, 王召海, 邢汉发, 厉静文, 孙硕. 基于MaxEnt模型的珙桐在中国潜在适生区预测. 生态学杂志, 2019,38(4):1230-1237.
WANG Y S, WANG Z H, XING H F, LI J W, SUN S. Prediction of potential suitable distribution of Davidia involucrate Baill in China based on Maxent. Chinese Journal of Ecology, 2019,38(4):1230-1237. (in Chinese)
[24] 林伟, 徐淼锋, 权永兵, 廖力, 高磊. 基于MaxEnt模型的草地贪夜蛾适生性分析. 植物检疫, 2019,33(4):69-73.
LIN W, XU M F, QUAN Y B, LIAO L, GAO L. Potential geographic distribution ofSpodoptera frugiperda in China based on MaxEnt model. Plant Quarantine, 2019,33(4):69-73. (in Chinese)
[25] 中国柑橘优势区域布局规划[2008-2015年]. 农业工程技术(农产品加工业), 2009(9):11-13.
China citrus advantage regional planning (2008-2015). Agriculture Engineering Technology (Agricultural Product Processing Industry), 2009(9):11-13. (in Chinese)
[26] 覃振强, 吴建辉, 任顺祥, 万方浩. 外来入侵害虫新菠萝灰粉蚧在中国的风险性分析. 中国农业科学, 2010,43(3):626-631.
QIN Z Q, WU J H, REN S X, WAN F H. Risk analysis of the alien invasive gray pineapple mealybug (Dysmicoccus neobrevipes Beardsley) in China. Scientia Agricultura Sinica, 2010,43(3):626-631. (in Chinese)
[27] ANDREU J, VILA M. Risk analysis of potential invasive plants in Spain. Journal for Nature Conservation, 2010,18(1):34-44.
[28] 王跃栋, 刘自学, 苏爱莲. 草坪草病害风险性评估体系的初步建立及应用. 草业科学, 2012,29(8):1199-1205.
WANG Y D, LIU Z X, SU A L. Preliminary establishment and application of turfgrass disease risk assessment system. Pratacultural Science, 2012,29(8):1199-1205. (in Chinese)
[29] LODGE D M, SIMONIN P W, BURGIEL S W, KELLER R P, BOSSENBROEK J M, JERDE C L, KRAMER A M, RUTHERFORD E S, BARNES M A, WITTMANN M E, et al. Risk analysis and bioeconomics of invasive species to inform policy and management. Annual Review of Environment and Resources, 2016,41:453-488.
[30] YANG Y, ZHANG T. Antimicrobial activities of tea polyphenol on phytopathogens: A review. Molecules, 2019,24(4):816.
[1] PAN Ru-Qian, XU Da-Gao, DENG Ming-Guang, JI Chun-Yan. Risk Analysis of the Alien Invasive Phytopathogen Cylindrocladium parasiticum in China [J]. Scientia Agricultura Sinica, 2012, 45(15): 3068-3074.
[2] QIN Zhen-qiang,WU Jian-hui,REN Shun-xiang,WAN Fang-hao
. Risk Analysis of the Alien Invasive Gray Pineapple Mealybug (Dysmicoccus neobrevipes Beardsley) in China
[J]. Scientia Agricultura Sinica, 2010, 43(3): 626-633 .
[3] . Spatial Variability of Soil Available Phosphorus and Environmental Risk Analysis of Soil Phosphorus in Pinggu County of Beijing
[J]. Scientia Agricultura Sinica, 2009, 42(4): 1290-1298 .
[4] TANG Chao,YU Peng,PENG Zheng-qiang,FU Yue-guan,WAN Fang-hao
. Risk Analysis of Spiralling Whitefly (Aleurodicus Disperses Russell) in Mainland of China
[J]. Scientia Agricultura Sinica, 2009, 42(12): 4420-4427 .
[5] ,,,,,. Risk Analysis of Alien Invasive Western Flower Thrips, Frankliniella occidentalis (Pergande), in China [J]. Scientia Agricultura Sinica, 2005, 38(11): 2360-2364 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!