Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 42-54.doi: 10.3864/j.issn.0578-1752.2020.01.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision

QiShuo DING1,HaiKang LI1,KeRun SUN2,RuiYin HE1,XiaoChan WANG1,FuXi LIU1,Xiang LI1   

  1. 1 College of Engineering, Nanjing Agricultural University/Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, Nanjing 210031
    2 Jiangsu Yinhua Chunxiang Machinery Manufacturing Co. Ltd., Lianyungang 222200, Jiangsu
  • Received:2019-04-30 Accepted:2019-05-20 Online:2020-01-01 Published:2020-01-19

Abstract:

【Objective】 High-throughput phenotyping (HTP) is not only an important tool of modern agriculture for crop breeding, but also a powerful means to illustrate physiological and ecological mechanisms of crops in the field. However, the basic features of structural components of each HTP tools have to be illustrated. It is therefore necessary to investigate what a technical feature is applicable to machine vision based HTP system.【Method】 An image-processing tool was developed to measure stem-and-ear level traits of each individual wheat stem. Three wheat species, i.e. Ningmai 13, Luyuan 502 and Zhengmai 9023, were used for plot experiment analysis. The wheat was sown with luffer board having equally spaced seeding holes. The precision seeding tools were applied to control wheat population accurately. At the maturity of post-paddy wheat, the integrated image of stem and ear was obtained, and the image was subjected to gray enhancement, histogram equalization, S component extraction, Otsu threshold segmentation, stem and ear separation, and stem and ear morphology parameters. The morphological parameters of the individual organs per stem-panicle of the extracted post-paddy wheat included stem length, average stem width, stem projection area, stem circumference, ear length, average ear width, ear projection area and ear circumference. In addition, traditional methods of measurement were used to derive single leaf weight, single stem weight, single ear weight and single ear yield etc. Linear, quadratic, extended and exponential models were applied for the regression on the collected multi-dimensional data sets, including correlations between ear and stem level biomass and individual ear grain yield, interrelationships among morphological parameters of stem and ear and single ear grain yield. Correlation analysis and regression analysis were performed on the processed indices of wheat. Based on this case study, some key aspects of technologies were discussed concerning on the application of machine vision tools on high-throughput phenotyping in the field.【Result】Results showed that correlation coefficients of individual stem and leaf weight with individual ear grain yield decreased steadily from Ningmai 13 to Luyuan 502, and till Zhengmai 9023. Correlation coefficient of stem and ear morphological parameters with individual ear grain yield was significantly lower than that among the biomasses. However, composite morphological parameter, which integrated single ear projection area and single ear length, was found significantly correlated with individual ear grain yield. The best regression model for the correlation between stem and ear biomass and individual ear grain yield of the three wheat species were different. Morphological parameters derived from ear images failed to predict individual ear grain yield precisely. However, combined morphological parameters from wheat stem and wheat ear revealed the best result of regression with extension models. Composite morphological stem-and-ear level traits of individual wheat stem provided more accurate prediction on the ear-derived grain yield, which could make the yield prediction with growth-stage traits collected with machine vision technically possible. Machine vision tools of HTP provided a much higher sets of agronomic trait indices as compared with traditional methods, providing more options for the illustration on the correlations among agronomic traits and path-analysis on crop yield. It in turn resulted into high-dimensional data sets and technical difficulties impeding the identification on valuable information. 【Conclusion】A basic infrastructure of HTP machine vision tools for field wheat stand was defined as multi-scale and automatic adaptation aspect. It should be autonomously adaptable to multi-scales concerning with the field, crop stand, individual crop and organ-level traits of each individual crop. It also provided traits identification and calculation with statistical analysis on different physiological periods of wheat, e.g. seedling stage, tillering stage, jointing stage etc. Meanwhile, in each development stage of the machine-vision HTP tools and for each functional module, in-depth involvement of agronomical calibration was required. In safeguarding the reliability of machine-vision tools, standardization on referencing HTP-derived traits was also necessary.

Key words: machine vision, individual stem and ear, high-throughput analysis, trait indices, ear-level grain yield

Fig. 1

Seeding on simulated drill with no-till device"

Fig. 2

Digital image preprocessing"

Fig. 3

Images histogram of H, S and V"

Fig. 4

Separation location image of wheat stem and ear"

Fig. 5

The relationship between estimated and observed value for wheat stem parameters"

Table 1

The regression model between aboveground biomass per stem-panicle and ear-derived grain yield of wheat"

拟合模型 Fitting model 模型类型 Model type 模型方程 Model equation
单穗质量与单穗籽粒产量
Ear-derived weight and grain yield
线性Linear SEY=a0+a1×SEW
二次Quadratic SEY=a0+a1×SEW2
指数Exponential ln(SEY)=a0+a1×ln(SEW)2
地上部各器官生物量与单穗
籽粒产量
Biomass of different organs and ear-derived grain yield
线性Linear SEY=a0+a1×SLW+a2×SSW+a3×SEW
二次Quadratic SEY=a0+a1×SLW2+a2×SSW2+a3×SEW2
拓展Extended SEY=a0+a1×SLW2+a2×SSW2+a3×SEW2+a4×SLW×SSW+a5×SLW×SEW+a6×SSW×SEW
指数Exponential ln(SEY)=a0+a1×ln(SLW)2+a2×ln(SSW)2+a3×ln(SEW)2

Table 2

The regression model between stem & ear morphological parameters per stem-panicle and ear-derived grain yield of wheat"

拟合模型 Fitting model 模型类型 Model type 模型方程 Model equation
麦穗形态参数与单穗籽粒产量
Ear morphological parameters and ear-derived grain yield
线性Linear SEY=a0+a1×SEL+a2×SEAW+a3×SEA+a4×SEC
二次Quadratic SEY=a0+a1×SEL2+a2×SEAW2+a3×SEA2+a4×SEC2
拓展Extended SEY=a0+a1×SEL2+a2×SEAW2+a3×SEA2+a4×SEC2+a5×SEL×SEAW+a6×SEL×SEA+a7×SEL×SEC+...
指数Exponential ln(SEY)=a0+a1×ln(SEL)2+a2×ln(SEAW)2+a3×ln(SEA)2+a4×ln(SEC)2
茎秆和麦穗形态参数与单穗籽粒产量
Stem and ear morphological
parameters and ear-derived grain yield
线性Linear SEY=a0+a1×SEL+a2×SEAW+a3×SEA+a4×SEC+a5×SSL+a6×SSAW+a7×SSA+a8×SSC
二次Quadratic SEY=a0+a1×SEL2+a2×SEAW2+a3×SEA2+a4×SEC2+a5×SSL2+a6×SSAW2+a7×SSA2+a8×SSC2
拓展Extended SEY=a0+a1×SEL2+a2×SEAW2+a3×SEA2+a4×SEC2+a5×SSL2+a6×SSAW2+a7×SSA2+a8×SSC2+a9× SEL×SEAW+...
指数Exponential ln(SEY)=a0+a1×ln(SEL)2+a2×ln(SEAW)2+a3×ln(SEA)2+a4×ln(SEC)2+a5×ln(SSL)2+a6×ln(SSAW)2+a7× ln(SSA)2+a8×ln(SSC)2

Table 3

Correlations between aboveground biomass per stem-panicle and ear-derived grain yield of wheat"

品种 Variety 单叶片质量SLW (g) 单茎秆质量SSW (g) 单穗质量SEW (g)
宁麦13 Ningmai 13 0.719** 0.765** 0.950**
鲁原502 Luyuan 502 0.510** 0.565** 0.927**
郑麦9023 Zhengmai 9023 0.475** 0.529** 0.919**
指数Exponential ln(SEY)=a0+a1×ln(SLW)2+a2×ln(SSW)2+a3×ln(SEW)2

Table 4

Correlations between stem and ear morphological parameters per stem-panicle and ear-derived grain yield of wheat"

品种
Variety
单茎投影面积SSA (mm2) 单茎周长
SSC (mm)
单茎长
SSL (mm)
单茎平均宽度SSAW (mm) 单穗投影面积SEA (mm2) 单穗周长
SEC (mm)
单穗长
SEL (mm)
单穗平均
宽度SEAW (mm)
宁麦13
Ningmai 13
0.090 0.058 0.116 0.112 0.505** 0.478** 0.496** 0.336*
鲁原502
Luyuan 502
-0.052 0.133 0.173 -0.186 0.554** 0.396** 0.649** 0.209
郑麦9023
Zhengmai 9023
0.184 0.224 0.383** 0.114 0.393** 0.320* 0.383** 0.285*

Table 5

Fitting results of wheat single ear weight and ear-derived grain yield regression model"

品种
Variety
模型
Model
系数Coefficient 决定系数
R2
F
F value
P
P value
误差方差估计
MSp
a0 a1
宁麦13
Ningmai 13
线性Linear -0.061 0.783 0.902 443.105 0.000 0.009
二次Quadratic 0.459 0.275 0.914 248.683 0.000 0.008
指数Exponential 3.183 0.071 0.882 357.326 0.000 0.010
鲁原502
Luyuan 502
线性Linear 0.002 0.673 0.859 293.457 0.000 0.023
二次Quadratic 0.584 0.168 0.862 146.316 0.000 0.023
指数Exponential 3.186 0.069 0.670 97.358 0.000 0.060
郑麦9023
Zhengmai 9023
线性Linear -0.099 0.695 0.844 259.356 0.000 0.036
二次Quadratic 0.454 0.191 0.858 290.450 0.000 0.033
指数Exponential 2.921 0.073 0.744 139.620 0.000 0.059

Table 6

Fitting results of wheat single stem weight, sperm-carrying leaf weight & ear weight and ear-derived grain yield regression model"

品种
Variety
模型
Model
系数Coefficient 决定系R2 F
F value
P
P value
误差方差估计
Error variance estimation
a0 a1 a2 a3
宁麦13
Ningmai 13
线性Linear -0.065 -0.046 0.120 0.778 0.903 141.909 0.000 0.009
二次Quadratic 0.452 0.137 0.038 0.263 0.918 80.005 0.000 0.008
拓展Extended 0.452 1.915 -4.978 0.099 0.925 54.835 0.000 0.008
指数Exponential 3.182 0.002 -0.003 0.072 0.885 117.718 0.000 0.011
鲁原502
Luyuan 502
线性Linear -0.045 0.049 0.092 0.654 0.861 94.656 0.000 0.024
二次Quadratic 0.511 -0.243 0.361 0.159 0.840 80.046 0.000 0.027
拓展Extended 0.518 -0.727 -2.887 0.021 0.856 42.714 0.000 0.027
指数Exponential 2.924 0.011 0.004 0.064 0.681 2.788 0.000 0.061
郑麦9023
Zhengmai 9023
线性Linear 0.059 -0.032 -0.446 0.792 0.863 96.222 0.000 0.033
二次Quadratic 0.512 -0.025 -0.204 0.207 0.867 100.115 0.000 0.032
拓展Extended 0.502 2.883 1.752 0.169 0.872 48.618 0.000 0.033
指数Exponential 3.242 0.003 -0.021 0.081 0.788 56.975 0.000 0.054

Table 7

Fitting results of wheat single ear morphological parameters and ear-derived grain yield regression model"

品种
Variety
模型
Model
系数Coefficient 决定系数R2 F
F value
P
P value
误差方差估计
Error variance estimation
a0 a1 a2 a3
宁麦13
Ningmai 13
线性Linear -0.067 0.014 0.011 0.000 0.337 7.796 0.000 0.063
二次Quadratic 0.566 0.000 0.000 0.000 0.340 3.695 0.005 0.067
拓展Extended 0.315 -0.001 -0.017 0.000 0.434 3.408 0.003 0.062
指数Exponential 4.788 0.165 0.109 -0.023 0.281 5.979 0.002 0.069
鲁原502
Luyuan 502
线性Linear 0.080 0.016 -0.021 0.000 0.447 12.399 0.000 0.096
二次Quadratic 0.620 0.000 -0.001 0.000 0.496 11.049 0.000 0.090
拓展Extended 0.468 0.000 -0.013 0.000 0.618 6.298 0.000 0.078
指数Exponential 4.800 0.128 -0.021 0.032 0.416 10.920 0.000 0.102
郑麦9023
Zhengmai 9023
线性Linear 1.892 0.006 -0.152 0.003 0.235 4.107 0.012 0.201
二次Quadratic 0.713 0.000 -0.001 0.000 0.243 3.131 0.025 0.204
拓展Extended 3.413 0.005 -0.023 0.000 0.413 2.322 0.034 0.187
指数Exponential 5.160 0.259 -0.016 0.034 0.283 3.850 0.009 0.193

Table 8

Fitting results of wheat single stem & ear morphological parameters and ear-derived grain yield regression model"

品种
Variety
模型
Model
系数Coefficient 决定系数R2 F
F value
P
P value
误差方差估计
Error variance estimation
a0 a1 a2 a3
宁麦13 线性Linear -1.080 0.023 0.016 0.000 0.344 3.757 0.004 0.067
Mingmai 13 二次Quadratic 0.065 0.000 0.000 0.000 0.421 2.240 0.030 0.069
拓展Extended 0.862 0.000 -0.098 0.000 0.829 1.468 0.181 0.071
指数Exponential 3.113 -0.011 0.091 0.029 0.328 3.492 0.007 0.069
鲁原502
Luyuan 502
线性Linear -0.815 0.015 -0.018 0.000 0.612 8.075 0.000 0.076
二次Quadratic 0.140 0.000 0.000 0.000 0.617 8.271 0.000 0.075
拓展Extended 0.299 -0.005 0.066 0.000 0.935 6.669 0.000 0.040
指数Exponential -0.090 0.142 0.028 0.033 0.544 8.565 0.000 0.085
郑麦9023
Zhengmai 9023
线性Linear -1.253 0.010 0.085 0.002 0.303 2.678 0.029 0.198
二次Quadratic -0.228 0.000 0.000 0.000 0.296 1.836 0.103 0.212
拓展Extended 34.07 0.030 -0.838 0.000 0.897 1.686 0.243 0.155
指数Exponential 0.812 0.314 0.185 -0.043 0.410 3.003 0.011 0.177
[1] 潘锐, 熊勤学, 张文英 . 数字图像技术及其在作物表型研究中的应用研究进展. 长江大学学报(自然科学版), 2016,13(21):38-41, 46.
PAN Y, XIONG Q X, ZHANG W Y . Research advances in digital image technology and its application in crop phenotype. Journal of Yangtze University(Natural Science Edition), 2016,13(21):38-41, 46. (in Chinese)
[2] SINGH A, GANAPATHYSUBRAMANIAN B, SINGH A K, SARKAR S . Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 2015,21(2):110-124.
[3] GOGGIN F L, LORENCE A, TOPP C N . Applying high-through-put phenotyping to plant-insect interactions: Picturing more resistant crops. Current Opinion of Insect Science, 2015,9:69-76.
[4] 潘映红 . 论植物表型组和植物表型组学的概念与范畴. 作物学报, 2015,41(2):175-186.
PAN Y H . Analysis of concepts and categories of plant phenome and phenomics. Acta Agronomica Sinica, 2015,41(2):175-186.(in Chinese)
[5] 范梦扬, 马钦, 刘峻明, 王庆, 王越, 段熊春 . 基于机器视觉的大田环境小麦麦穗计数方法. 农业机械学报, 2015,46(S1):234-239.
FAN M Y, MA Q, LIU J M, WANG Q, WANG Y, DUAN X C . Counting method of wheatear in field based on machine vision technology. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(S1):234-239. (in Chinese)
[6] 路文超, 罗斌, 潘大宇, 赵勇, 于春花, 王成 . 基于图像处理的小麦穗长和小穗数同步测量. 中国农机化学报, 2016,37(6):210-215.
LU W C, LUO B, PAN D Y, ZHAO Y, YU C H, WANG C . Synchronous measurement of wheat ear length and spikelets number based on image processing. Journal of Chinese Agricultural Mechanization, 2016,37(6):210-215. (in Chinese)
[7] 刘涛, 孙成明, 王力坚, 仲晓春, 朱新开, 郭文善 . 基于图像处理技术的大田麦穗计数. 农业机械学报, 2014,45(2):282-290.
LIU T, SUN C M, WANG L J, ZHONG X C, ZHU X K, GUO W S . In-field wheatear counting based on image processing technology. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(2):282-290. (in Chinese)
[8] 杜世伟, 李毅念, 姚敏, 李玲, 丁启朔, 何瑞银 . 基于小麦穗部小穗图像分割的籽粒计数方法. 南京农业大学学报, 2018,41(4):742-751.
DU S W, LI Y N, YAO M, LI L, DING Q S, HE R Y . Counting method of grain number based on wheatear spikelet image segmentation. Journal of Nanjing Agricultural University, 2018,41(4):742-751. (in Chinese)
[9] 赵三琴, 李毅念, 丁为民, 吕俊逸, 王心怡 . 稻穗结构图像特征与籽粒数相关关系分析. 农业机械学报, 2014,45(12):323-328.
ZHAO S Q, LI Y N, DING W M, LÜ J Y, WANG X Y . Relative analysis between image characteristics of panicle structure and spikelet number. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(12):323-328. (in Chinese)
[10] HU P, CHAPMAN S C, WANG X, POTGIETER A, DUAN T, JORDAN D, GUO Y, ZHENG B . Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. European Journal of Agronomy, 2018,95:24-32.
[11] 牛庆林, 冯海宽, 杨贵军, 李长春, 杨浩, 徐波, 赵衍鑫 . 基于无人机数码影像的玉米育种材料株高和LAI监测. 农业工程学报, 2018,34(5):73-82.
NIU Q L, FENG H K, YANG G J, LI C C, YANG H, XU B, ZHAO Y X . Monitoring plant height and leaf area index of maize breeding material based on UAV digital images. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(5):73-82. (in Chinese)
[12] 樊超, 夏旭, 石小凤, 侯利龙 . 基于优化神经网络的小麦品种分类研究. 河南工业大学学报(自然科学版), 2012,33(4):72-76.
FAN C, XIA X, SHI X F, HOU L L . Research on wheat variety classification based on optimized artificial neural network. Journal of Henan University of Technology(Natural Science Edition), 2012,33(4):72-76. (in Chinese)
[13] 何胜美, 李仲来, 何中虎 . 基于图像识别的小麦品种分类研究. 中国农业科学, 2005,38(9):1869-1875.
HE S M, LI Z L, HE Z H . Classification of wheat cultivar by digital image analysis. Scientia Agricultura Sinica, 2005,38(9):1869-1875. (in Chinese)
[14] MEBATSION H K, PALIWAL J, JAYAS D S . A novel, invariant elliptic Fourier coefficient based classification of cereal grains. Biosystems Engineering, 2012,111(4):422-428.
[15] TAHIR A R, NEETHIRAJAN S, JAYAS D S, SHAHIN M A, SYMONS S J, WHITE N D G . Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Research International, 2007,40(9):1140-1145.
[16] KIPP S, MISTELE B, BARESEL P, SCHMIDHALTER U . High-throughput phenotyping early plant vigour of winter wheat. European Journal of Agronomy, 2014,52:271-278.
[17] 张猛, 孙红, 李民赞, ZHANG Q, 郑立华 . 基于4波段作物光谱测量仪的小麦分蘖数预测. 农业机械学报, 2016,47(9):341-347.
ZHANG M, SUN H, LI M Z, ZHANG Q, ZHENG L H . Prediction of winter wheat tiller number based on 4-waveband crop monitor with spectral reflectance. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(9):341-347. (in Chinese)
[18] 任建强, 吴尚蓉, 刘斌, 陈仲新, 刘杏认, 李贺 . 基于Hyperion高光谱影像的冬小麦地上干生物量反演. 农业机械学报, 2018,49(4):199-211.
REN J Q, WU S R, LIU B, CHEN Z X, LIU X R, LI H . Retrieving winter wheat above-ground dry biomass based on hyperion hyperspectral imagery. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(4):199-211. (in Chinese)
[19] 吴迪, 杨万能, 牛智有, 黄成龙 . 小麦分蘖形态学特征X射线-CT无损检测. 农业工程学报, 2017,33(14):196-201.
WU D, YANG W N, NIU Z Y, HUANG C L . Non-destructive detection of wheat tiller morphological traits based on X-ray CT technology. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(14):196-201. (in Chinese)
[20] YANG W, XU X, CHEN S, DUAN L, LUO Q, CHEN S, ZENG S, LIU Q . High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography. Review of Scientific Instruments, 2011,82(2):025102-025109.
[21] NEETHIRAJAN S, JAYAS D S, WHITE N D G . Detection of sprouted wheat kernels using soft X-ray image analysis. Journal of Food Engineering, 2007,81(3):509-513.
[22] KRONENBERG L, YU K, WALTER A, HUND A . Monitoring the dynamics of wheat stem elongation: Genotypes differ at critical stages. Euphytica, 2017,213(7):157-170.
[23] REISER D, VÁZQUEZ-ARELLANO M, PARAFOROS D S, MARRIDO-IZARD M, GRIEPENTROG H W . Iterative individual plant clustering in maize with assembled 2D LiDAR data. Computers in Industry, 2018,99:42-52.
[24] JIMENEZ-BERNI J A, DEERY D M, ROZAS-LARRAONDO P, CONDON A G, REBETZKE G J, GREG J, JAMES R A, BOVILL W D, FURBANK R T, SIRAULT X R R . High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Frontiers in Plant Science, 2018,9(237):1-18.
[25] 周济, TARDIEU F, PRIDMORE T, DOONAN J, REYNOLDS D, HALL N, GRIFFITHS S, 程涛, 朱艳, 王秀娥, 姜东, 丁艳峰 . 植物表型组学: 发展、现状与挑战. 南京农业大学学报, 2018,41(4):580-588.
ZHOU J, TARDIEU F, PRIDMORE T, DOONAN J, REYNOLDS D, HALL N, GRIFFITHS S, CHENG T, ZHU Y, WANG X E, JIANG D, DING Y F . Plant phenomics: History, present status and challenges. Journal of Nanjing Agricultural University, 2018,41(4):580-588. (in Chinese)
[26] JIN X, LIU S, BARET F, HEMERLÉ M, COMAR A . Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment, 2017,198:105-114.
[27] KIM D, YUN H S, JEONG S, KWON Y, KIM S, LEE W S, KIM H . Modeling and testing of growth status for Chinese cabbage and white radish with UAV-Based RGB imagery. Remote Sensing, 2018,10(4):563-588.
[28] KHAN Z, RAHIMI-EICHI V, HAEFELE S, GARNETT T, MIKLAVCIC S J . Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods, 2018,14(1):20.
[29] HE J Q, HARRISON R J, LI B . A novel 3D imaging system for strawberry phenotyping. Plant Methods, 2017,13(1):93-101.
[30] WALTER J, EDWARDS J, MCDONALD G, KUCHEL H . Photogrammetry for the estimation of wheat biomass and harvest index. Field Crops Research, 2018,216:165-174.
[31] 陈昱利, 杨平, 张文宇, 张伟欣, 诸叶平, 李世娟, 巩法江, 毕海滨, 岳霆, 曹宏鑫 . 越冬前冬小麦主茎叶片几何参数模型研究. 麦类作物学报, 2015,35(12):1719-1726.
CHEN Y L, YANG P, ZHANG W Y, ZHANG W X, ZHU Y P, LI S J, GONG F J, BI H B, YUE T, CAO H X . Study on main geometrical parameter models of leaf blade at pre-overwintering of winter wheat. Journal of Triticeae Crops, 2015,35(12):1719-1726. (in Chinese)
[32] 陈留根, 刘红江, 沈明星, 郑建初 . 不同播种方式对小麦产量形成的影响. 江苏农业学报, 2015,31(4):786-791.
CHEN L G, LIU H J, SHEN M X, ZHENG J C . Effects of different seeding modes on grain yield formation of wheat. Jiangsu Journal of Agricultural Sciences, 2015,31(4):786-791. (in Chinese)
[33] 张明伟, 马泉, 丁锦峰, 李春燕, 朱新开, 封超年, 郭文善 . 密度与肥料运筹对迟播小麦产量和茎秆抗倒能力的影响. 麦类作物学报, 2018,38(5):584-592.
ZHANG M W, MA Q, DING J F, LI C Y, ZHU X K, FENG C N, GUO W S . Effect of density and nitrogen application on clum lodging resistance and yield of late sowing wheat. Journal of Triticeae Crops, 2018,38(5):584-592. (in Chinese)
[34] REUZEAU C, PEN J, FRANKARD V, WOLF J, PEERBOLTE R, BROEKAERT W, CAMP W . TraitMill: A discovery engine for identifying yield-enhancement genes in cereals. Molecular Plant Breeding, 2005,3(5):753-759.
[35] 吴升, 郭新宇, 苗腾, 肖伯祥, 温维亮, 赵春江 . 基于Multi-Agent的智能植物系统的构建与应用研究. 中国农业科技导报, 2017,19(5):60-69.
WU S, GUO X Y, MIAO T, XIAO B X, WEN W L, ZHAO C J . Construction and application of intelligent plant platform based on Multi-Agent. Journal of Agricultural Science and Technology, 2017,19(5):60-69. (in Chinese)
[36] 芮超杰 . 稻茬麦免耕种植技术模式及其效应研究[D]. 南京: 南京农业大学, 2016.
RUI C J . Research on no-till post-paddy wheat seeding technologies and its’ effect[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[37] 冯慧, 熊立仲, 陈国兴, 杨万能, 刘谦 . 基于高光谱成像和主成分分析的水稻茎叶分割. 激光生物学报, 2015,24(1):31-37.
FENG H, XIONG L Z, CHEN G X, YANG W N, LIU Q . The segmentation of leaf and stem of individual rice plant with hyperspectral imaging system and principal component analysis. Acta Laser Biology Sinica, 2015,24(1):31-37. (in Chinese)
[38] OTSU N . A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 1979,9(1):62-66.
[39] 陈昱利, 杨平, 张文宇, 张伟欣, 诸叶平, 李世娟, 巩法江, 毕海滨, 岳霆, 曹宏鑫 . 基于生物量的冬小麦穗部主要形态参数模型. 作物学报, 2017,43(3):399-406.
CHEN Y L, YANG P, ZHANG W Y, ZHANG W X, ZHU Y P, LI S J, GONG F J, BI H B, YUE T, CAO H X . Biomass-based main spike morphological parameter model for winter wheat. Acta Agronomica Sinica, 2017,43(3):399-406. (in Chinese)
[40] 亓振, 赵广才, 常旭虹, 王德梅, 陶志强, 杨玉双, 王美, 范仲卿, 郭明明, 王雨, 孙通, 刘孝成 . 小麦产量与农艺性状的相关分析和通径分析. 作物杂志, 2016(3):45-50.
QI Z, ZHAO G C, CHANG X H, WANG D M, TAO Z Q, YANG Y S, WANG M, FAN Z Q, GUO M M, WANG Y, LIU T, LIU X C . Correlation and path analysis on wheat yield and agronomic indices. Crops, 2016(3):45-50. (in Chinese)
[41] 周延辉, 朱新开, 郭文善, 封超年 . 稻茬小麦中高产水平下产量及其构成因素分析. 麦类作物学报, 2018,28(3):293-297.
ZHOU Y H, ZHU X K, GUO W S, FENG C N . Analysis of yield and yield components of wheat after rice on medium-high-yielding level. Journal of Triticeae Crops, 2018,28(3):293-297. (in Chinese)
[42] 蒋霓 . 单株水稻绿叶面积无损测量方法研究[D]. 武汉: 华中科技大学, 2014.
JIANG N . A non-destructive method for total green leaf area estimation of individual rice plants[D]. Wuhan: Huazhong University of Science and Technology, 2014. (in Chinese)
[43] 龚红菊, 姬长英 . 基于图像处理技术的麦穗产量测量方法. 农业机械学报, 2007,38(12):116-119.
GONG H J, JI C Y . Estimating yield of wheat spike with its texture features based on image processing technology. Transactions of the Chinese Society for Agricultural Machinery, 2007,38(12):116-119. (in Chinese)
[44] 仇瑞承, 苗艳龙, 张漫, 李寒, 孙红 . 基于线性回归的玉米生物量预测模型及验证. 农业工程学报, 2018,34(10):131-137.
QIU R C, MIAO Y L, ZHANG M, LI H, SONG H . Modeling and verification of maize biomass based on linear regression analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(10):131-137. (in Chinese)
[45] 赵春江, 陆声链, 郭新宇, 杜建军, 温维亮, 苗腾 . 数字植物研究进展:植物形态结构三维数字化. 中国农业科学, 2015,48(17):3415-3428.
ZHAO C J, LU S L, GUO X Y, DU J J, WEN W L, MIAO T . Advances in research of digital plant: 3D digitization of plant morphological structure. Scientia Agricultura Sinica, 2015,48(17):3415-3428. (in Chinese)
[46] 邵庆勤, 周琴, 王笑, 蔡剑, 黄梅, 戴廷波, 姜东 . 种植密度对不同小麦品种茎秆形态特征、化学成分及抗倒性能的影响. 南京农业大学学报, 2018,41(5):808-816.
SHAO Q Q, ZHOU Q, WANG X, CAI J, HUANG M, DAI T B, JIANG D . Effects of planting density on stem morphological characteristics, chemical composition and lodging resistance of different wheat varieties. Journal of Nanjing Agricultural University, 2018,41(5):808-816. (in Chinese)
[47] 雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳 . 小麦麦穗几何模型构建与可视化. 农业工程学报, 2011,27(3):179-184.
LEI X J, TANG L, ZHANG Y H, JIANG H Y, CAO W X, ZHU Y . Geometric model and visualization of wheat spike. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(3):179-184. (in Chinese)
[48] 杨月, 刘兵, 刘小军, 刘蕾蕾, 范雪梅, 曹卫星, 朱艳 . 小麦生育期模拟模型的比较研究. 南京农业大学学报, 2014,37(1):6-14.
YANG Y, LIU B, LIU X J, LIU L L, FAN X M, CAO W X, ZHU Y . Comparison of phasic development models in wheat. Journal of Nanjing Agricultural University, 2014,37(1):6-14. (in Chinese)
[1] TANG Jun-1, DENG Li-Miao-2, CHEN Hui-1, LUAN Tao-1, MA Wen-Jie-1. Research on Maize Leaf Recognition of Characteristics from Transmission Image Based on Machine Vision [J]. Scientia Agricultura Sinica, 2014, 47(3): 431-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!