Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (5): 930-938.doi: 10.3864/j.issn.0578-1752.2019.05.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Immunogenicity Evaluation of Eukaryotic Expressing Plasmids Encoding HA Protein of Eurasian Avian-Like H1N1 Swine Influenza Virus

JIA YunHui,XU ChengZhi,SUI JinYu,WU YunPu,XU BangFeng,CHEN Yan,YANG HuanLiang,QIAO ChuanLing(),CHEN HuaLan   

  1. Animal Influenza Key Laboratory of the Ministry of Agriculture/State Key Laboratory of Veterinary Biotechnology/Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
  • Received:2018-09-03 Accepted:2019-01-15 Online:2019-03-01 Published:2019-03-12
  • Contact: ChuanLing QIAO E-mail:qiaochuanling@caas.cn

Abstract:

【Objective】This study aimed to construct the recombinant plasmid expressing HA gene of Eurasian avian-like H1N1 (EA H1N1) swine influenza virus (SIV) and then evaluate its immunogenicity in mice. 【Method】HA gene of A/swine/Zhejiang/ 245/2013(H1N1) (ZJ245) was amplified by RT-PCR, and inserted into an eukaryotic expression vector pCAGGS. The recombinant plasmid, designated as pCAGGS-HA(ZJ245), was transfected into 293T cells, and the expressed HA protein was identified by indirect fluorescence assay (IFA) and Western blot. In order to evaluate the immunogenicity of the recombinant plasmid pCAGGS- HA(ZJ245), sixteen six-week-old female BALB/c mice were immunized with 100 μg of the recombinant plasmid by intramuscular injection, and then were boosted once with a 3-week interval. Another group of sixteen mice received 100 μL of phosphate-buffered saline (PBS) were used as unvaccinated control. Serum samples were collected every week after prime and boost immunization in order to detect the hemagglutinin inhibition (HI) antibodies, virus neutralization (VN) antibodies, respectively. Two weeks after the boost immunization, pCAGGS-HA(ZJ245)-immunized and PBS-inoculated mice were intranasally challenged with 50 μL(10 6.0EID50) of the homologous ZJ245 and heterologous A/swine/Heilongjiang/44/2009(H1N1) (HLJ44), respectively. All mice per group were monitored daily for clinical signs of infection and body weight changes for two weeks. The mice that lost more than 25% of their initial body weight were euthanized on humane ground. On day 3 post-challenge three mice per group were euthanized and their organs including brain, nasal turbinate, lung, spleen and kidney were collected for virus titration in eggs. Immune efficacy of the recombinant plasmid pCAGGS-HA(ZJ245) was evaluated by body weight loss and virus replication titer in mice, respectively. 【Result】The recombinant plasmid pCAGGS-HA(ZJ245) was constructed by inserting HA gene of ZJ245 virus and verified by restriction endonuclease analysis and plasmid sequencing. IFA and Western blot analysis confirmed that the HA protein could be correctly expressed by the recombinant plasmid pCAGGS-HA(ZJ245) and had a good biological activity in vitro. Immunization and challenge trial indicated that low levels of HI and VN antibody against the homologous ZJ245 virus were initially detected one week after the first immunization, and significantly increased after the second immunization, with the HI titer of 76.88 and the VN titer of 152.5, respectively. Meanwhile, low levels of HI and VN antibodies against the heterologous HLJ44 virus were also detected. Compared with PBS-inoculated mice, the weight loss and viral replication rate of the pCAGGS-HA(ZJ245)-vaccinated mice when challenged with 10 6.0EID50 of the homologous ZJ245 virus were completely inhibited. When challenged with 10 6.0EID50 of the heterologous HLJ44 virus, the extent of weight loss and viral titer of the challenge virus detected in the pCAGGS-HA(ZJ245)- vaccinated mice were significantly lower than those in the PBS-inoculated mice (P<0.0001, P<0.001, P<0.05).【Conclusion】The recombinant plasmid pCAGGS-HA(ZJ245) could efficiently express HA protein, and provided complete protection for the immunized mice against the homologous ZJ245 virus infection and partial cross-protection against the heterologous HLJ44 virus infection, which indicated that the recombinant plasmid pCAGGS-HA(ZJ245) had good immunogenicity.

Key words: Eurasian avian-like H1N1 swine influenza virus, hemagglutinin protein, recombinant plasmid, immunogenicity, DNA vaccine

Fig. 1

Amplification of HA gene of ZJ245 by RT-PCR (A) and restriction endonuclease analysis of recombinant plasmids pCAGGS-HA(ZJ245) (B) (A) M: DL2000 DNA marker; 1: RT-PCR result of HA gene; 2: Negative control. (B) M: DL5000 DNA marker ; 1: pCAGGS-HA(ZJ245)digested by ClaI and BglⅡ; 2: pCAGGS digested by ClaI and BglⅡ"

Fig. 2

Expression of HA protein in 293T cells by IFA (×200) A: 293T cells transfected with pCAGGS-HA; B: 293T cells transfected with pCAGGS"

Fig. 3

Western blot analysis of HA protein M:Protein Marker; 1: 293T cell transfected with pCAGGS-HA; 2: 293T cell transfected with pCAGGS"

Fig. 4

HI antibody titers (A) and VN antibody titers (B) of the BALB/c mice immunized with pCAGGS-HA(ZJ245)"

Fig. 5

The body weight changes of mice after challenged with ZJ245 (A) and HLJ44 virus (B)"

Fig. 6

Virus titration in the organs of mice after challenged with ZJ245 (A) and HLJ44 virus (B)"

[1] BROWN I . The epidemiology and evolution of influenza viruses in pigs. Veterinary Microbiology, 2000,74(1/2):29-46.
doi: 10.1016/S0378-1135(00)00164-4 pmid: 10799776
[2] WEBBY R J, WEBSTER R G . Emergence of influenza A viruses. Philosophical Transactions of the Royal Society B Biological Sciences, 2001,356(1416):1817-1828. doi: 10.1098/rstb.2001.0997.
doi: 10.1098/rstb.2001.0997 pmid: 1088557
[3] BAUDON E, PEYRE M, PEIRIS M, COWLING B J . Epidemiological features of influenza circulation in swine populations: A systematic review and meta-analysis. PLoS ONE, 2017,12(6):e179044. doi: 10.1371/journal.pone.0179044.
doi: 10.1371/journal.pone.0179044 pmid: 28591202
[4] NEUMANN G, NODA T, KAWAOKA Y . Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009,459(7249):931-939. doi: 10.1038/nature08157.
doi: 10.1038/nature08157 pmid: 19525932
[5] SCHULTZ U, FITCH W M, LUDWIG S, MANDLER J, SCHOLTISSEK C . Evolution of pig influenza viruses. Virology, 1991,183(1):61-73.
doi: 10.1016/0042-6822(91)90118-U pmid: 2053297
[6] LIU J, BI Y, QIN K, FU G, YANG J, PENG J, MA G, LIU Q, PU J, TIAN F . Emergence of European avian influenza virus-like H1N1 swine influenza A viruses in China. Journal of Clinical Microbiology, 2009,47(8):2643-2646. doi: 10.1128/JCM.00262-09.
doi: 10.1128/JCM.00262-09 pmid: 1460195
[7] VINCENT A, AWADA L, BROWN I, CHEN H, CLAES F, DAUPHIN G, DONIS R, CULHANE M, HAMILTON K, LEWIS N, MUMFORD E, NGUYEN T, PARCHARIYANON S, PASICK J, PAVADE G, PEREDA A, PEIRIS M, SAITO T, SWENSON S, VAN REETH K, WEBBY R, WONG F, CIACCI-ZANELLA J . Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health, 2014,61(1):4-17. doi: 10.1111/zph.12049.
doi: 10.1111/zph.12049 pmid: 23556412
[8] GUAN Y, SHORTRIDGE K F, KRAUSS S, LI P H, KAWAOKA Y, WEBSTER R G . Emergence of avian H1N1 influenza viruses in pigs in China. Journal of Virology, 1996,70(11):8041-8046.
doi: 10.1111/j.1365-2893.1996.tb00107.x pmid: 190877
[9] YANG H, CHEN Y, QIAO C, HE X, ZHOU H, SUN Y, YIN H, MENG S, LIU L, ZHANG Q, KONG H, GU C, LI C, BU Z, KAWAOKA Y, CHEN H . Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proceedings of the National Academy of Sciences of the USA, 2016,113(2):392-397. doi: 10.1073/pnas.1522643113.
doi: 10.1073/pnas.1522643113 pmid: 26711995
[10] CAMPITELLI L, DONATELLI I, FONI E, CASTRUCCI M R, FABIANI C, KAWAOKA Y, KRAUSS S, WEBSTER R G . Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology, 1997,232(2):310-318. doi: 10.1006/viro.1997.8514.
doi: 10.1006/viro.1997.8514 pmid: 9191844
[11] DE JONG J C, PACCAUD M F, DE RONDE-VERLOOP F M, HUFFELS N H, VERWEI C, WEIJERS T F, BANGMA P J, VAN KREGTEN E, KERCKHAERT J A, WICKI F, WUNDERLI W . Isolation of swine-like influenza A (H1N1) viruses from man in Switzerland and the Netherlands. Annales de l'Institut Pasteur/ Virologie, 1988,139(4):429-437.
doi: 10.1016/S0769-2617(88)80078-9 pmid: 3214596
[12] WANG D Y, QI S X, LI X Y, GUO J F, TAN M J, HAN G Y, LIU Y F, LAN Y, YANG L, HUANG W J, CHENG Y H, ZHAO X, BAI T, WANG Z, WEI H J, XIAO N, SHU Y L . Human infection with Eurasian avian-like influenza A(H1N1) virus, China. Emerging Infectious Diseases, 2013,19(10):1709-1711. doi: 10.3201/eid1910. 130420.
doi: 10.3201/eid1910.130420 pmid: 3810748
[13] YANG H, QIAO C, TANG X, CHEN Y, XIN X, CHEN H . Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerging Infectious Diseases, 2012,18(7):1144-1146. doi: 10.3201/ eid1807.120009.
doi: 10.3201/eid1807.120009 pmid: 3376805
[14] SUI J, YANG D, QIAO C, XU H, XU B, WU Y, YANG H, CHEN Y, CHEN H . Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice. Vaccine, 2016,34(33):3757-3763. doi: 10.1016/j.vaccine.2016.06.009.
doi: 10.1016/j.vaccine.2016.06.009 pmid: 27321744
[15] RUAN B, WEN F, GONG X, LIU X M, WANG Q, YU L X, WANG S Y, ZHANG P, YANG H M, SHAN T L, ZHENG H, ZHOU Y J, TONG W, GAO F, TONG G Z, YU H . Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European avian-like H1N1 swine influenza virus in mice and pigs. Veterinary Microbiology, 2018,222:75-84. doi: 10.1016/j.vetmic. 2018.07.003.
doi: 10.1016/j.vetmic.2018.07.003
[16] LIU L, LU J, ZHOU J, LI Z, ZHANG H, WANG D, SHU Y . Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus. Microbes and Infection, 2017,19(12):635-640. doi: 10.1016/j.micinf.2017.08.004.
doi: 10.1016/j.micinf.2017.08.004 pmid: 28859895
[17] WU Y, YANG D, XU B, LIANG W, SUI J, CHEN Y, YANG H, CHEN H, WEI P, QIAO C . Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice. Antiviral Research, 2017,147:29-36. doi: 10.1016/j.antiviral.2017.09.009.
doi: 10.1016/j.antiviral.2017.09.009 pmid: 28941982
[18] SHVARTSMAN D E, KOTLER M, TALL R D, ROTH M G, HENIS Y I . Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. Journal of Cell Biology, 2003,163(4):879-888. doi: 10.1083/jcb.200308142.
doi: 10.1083/jcb.200308142 pmid: 14623870
[19] TREGONING J S, KINNEAR E . Using plasmids as DNA vaccines for infectious diseases. Microbiology Spectrum, 2014,2(6):1-16. doi: 10.1128/microbiolspec.PLAS-0028-2014.
[20] 徐汇洋, 许榜丰, 陈艳, 隋金钰, 杨焕良, 尹航, 杨大为, 乔传玲, 陈化兰 .一株H1N1猪流感病毒的进化分析与分子特征[J]. 中国农业科学,2015(15):3071-3078. doi: 10.3864/j.issn.0578-1752. 2015.15.018.
doi: 10.3864/j.issn.0578-1752.2015.15.018
XU H Y, XU B F, CHEN Y, SUI J Y, YANG H L, YIN H, YANG D W, QIAO C L, CHEN H L .Phylogenetic analysis and molecular characteristics of an H1N1subtype swine influenza virus.Scientia Agricultura Sinica, 2015(15):3071-3078. (in Chinese). doi: 10.3864/ j.issn.0578-1752.2015.15.018.
doi: 10.3864/j.issn.0578-1752.2015.15.018
[21] CHEN Y, ZHANG J, QIAO C, YANG H, ZHANG Y, XIN X , CHEN H. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China. Infection, Genetics and Evolution, 2013, 13:331-338. doi: 10.1016/j.meegid. 2012.09.021.
doi: 10.1016/j.meegid.2012.09.021 pmid: 23146831
[22] PENSAERT M, OTTIS K, VANDEPUTTE J, KAPLAN M M, BACHMANN P A . Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man. Bulletin of the World Health Organ, 1981,59(1):75-78.
[23] DUCATEZ M F, HAUSE B, STIGGER-ROSSER E, DARNELL D, CORZO C, JULEEN K, SIMONSON R, BROCKWELL-STAATS C, RUBRUM A, WANG D, WEBB A, CRUMPTON J C, LOWE J, GRAMER M, WEBBY R J . Multiple reassortment between pandemic (H1N1) 2009 and endemic influenza viruses in pigs, United States. Emerging Infectious Diseases, 2011,17(9):1624-1629. doi: 10.3201/ eid1709.110338.
doi: 10.3201/eid1709.110338 pmid: 21892996
[24] QIAO C, LIU L, YANG H, CHEN Y, XU H, CHEN H . Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China. Journal of Clinical Virology, 2014,61(4):529-534. doi: 10.1016/j.jcv. 2014.10.014.
doi: 10.1016/j.jcv.2014.10.014 pmid: 25467861
[25] WATSON S J, LANGAT P, REID S M, LAM TT, COTTEN M, KELLY M, VAN REETH K, QIU Y, SIMON G, BONIN E, FONI E, CHIAPPONI C, LARSEN L, HJULSAGER C, MARKOWSKA- DANIEL I, URBANIAK K DÜRRWALD R,SCHLEGEL M,HUOVILAINEN A,DAVIDSON I,DÁN Á,LOEFFEN W,EDWARDS S,BUBLOT M,VILA T,MALDONADO J,VALLS L,ESNIP3 CONSORTIUM,BROWN IH,PYBUS OG,KELLAM P,. Molecular epidemiology and evolution of influenza viruses circulating within European swine between 2009 and 2013. Journal of Virology, 2015,89(19):9920-9931. doi: 10.1128/JVI.00840-15.
doi: 10.1128/JVI.00840-15 pmid: 4577897
[26] RAJÃO D S, CHEN H, PEREZ D R, SANDBULTE M R, GAUGER P C, LOVING C L, SHANKS G D, VINCENT A . Vaccine-associated enhanced respiratory disease is influenced by Haemagglutinin and Neuraminidase in whole inactivated influenza virus vaccines. Journal of General Virology, 2016,97(7):1489-1499. doi: 10.1099/jgv.0. 000468.
[27] PILLET S, KOBASA D, MEUNIER I, GRAY M, LADDY D, WEINER D B, VON MESSLING V, KOBINGER G P . Cellular immune response in the presence of protective antibody levels correlates with protection against 1918 influenza in ferrets. Vaccine, 2011,29(39):6793-6801. doi: 10.1016/j.vaccine.2010.12.059.
doi: 10.1016/j.vaccine.2010.12.059 pmid: 21211587
[28] JIANG Y, YU K, ZHANG H, ZHANG P, LI C, TIAN G, LI Y, WANG X, GE J, BU Z, CHEN H . Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Research, 2007,75(3):234-241. doi: 10.1016/j.antiviral.2007.03.009.
doi: 10.1016/j.antiviral.2007.03.009
[29] PING X, HU W, XIONG R, ZHANG X, TENG Z, DING M, LI L, CHANG C, XU K . Generation of a broadly reactive influenza H1 antigen using a consensus HA sequence. Vaccine, 2018,36(32 Pt B):4837-4845. doi: 10.1016/j.vaccine.2018.06.048.
doi: 10.1016/j.vaccine.2018.06.048
[30] MURPHY B R, CLEMENTS M L . The systemic and mucosal immune response of humans to influenza A virus. Current Topics in Microbiology and Immunology,1989, 146:107-116.
[31] DE VLEESCHAUWER A R, VAN POUCKE S G, KARASIN A I, OLSEN CW, VAN REETH K . Cross-protection between antigenically distinct H1N1 swine influenza viruses from Europe and North America. Influenza Other Respiratory Viruses, 2011,5(2):115-122. doi: 10.1111/j.1750-2659.2010.00164.x.
doi: 10.1111/j.1750-2659.2010.00164.x pmid: 21306575
[32] BRAUCHER D R, HENNINGSON J N, LOVING C L, VINCENT A L, KIM E, STEITZ J, GAMBOTTO A A KEHRLI ME J R,. Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs. Clinical and Vaccine Immunology, 2012,19(11):1722-1729. doi: 10.1128/CVI.00315-12.
doi: 10.1128/CVI.00315-12 pmid: 22933397
[1] ZHAO Xiao-yun, QIAO Xu-wen, CHEN Jin, LI Peng-cheng, YU Xiao-ming, ZHU Guo-qiang, ZHENG Qi-sheng, HOU Ji-bo. PCV2 Virus Like Particles Vaccine Produced with Recombinant Cap Protein Expressed in E.coli [J]. Scientia Agricultura Sinica, 2015, 48(5): 976-986.
[2] TONG Chao, CHEN Ning, LIAO Xun, YUAN Xue-Mei, LI Xiao-Liang, FANG Wei-Huan. Construction of a Chimeric Classical Swine Fever Virus C-strain Containing E2 of Group Ⅱ Isolate Remains and Its Biological Characteristics [J]. Scientia Agricultura Sinica, 2013, 46(1): 179-186.
[3] SUN Yan, ZHONG Fei, LI Xiu-Jin, WANG Xing-Xing, WANG Lu, JIA Qi-Heng, HAN Dong-Mei, LI Zhen, ZHANG Feng, PAN Hong-Li. Immune Enhancing Effects of Canine Interleukin-7 Gene on Canine Parvovirus DNA Vaccine [J]. Scientia Agricultura Sinica, 2012, 45(10): 2058-2066.
[4] WANG Xiao, WANG Zhi-Gang, DU Rui-Ping. Co-administration Intranasally the FMDV DNA Vaccine and the Constructed Expressing IL-10 as the Molecular Adjuvant in Enhancement of Mucosal Immune Responses in Murine Model [J]. Scientia Agricultura Sinica, 2011, 44(14): 3045-3052 .
[5]
XIA Qing-xiang; ZHANG De-qing;;; WU Jia-qiang; NIU Xing; WANG Xiao-long; NIU Zhong-xiang
. Construction and Immunogenicity of DNA Vaccines Containing GP5 Gene Against PRRSV with Porcine C3d as Molecular Adjuvant [J]. Scientia Agricultura Sinica, 2011, 44(12): 2582-2588 .
[6] ZHAN Xiao-guo,QIAO Chuan-ling,YANG Huan-liang,CHEN Yan,KONG Wei,XIN Xiao-guang,CHEN Hua-lan
. Immunogenicity of a Recombinant Adenovirus Expressing HA Gene of H3N2 Subtype Swine Influenza Virus in Mice#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1235-1241 .
[7] LI Gui-wei,QIAO Xin-yuan,LIU Bo-chen,MA Guang-peng,LIU Min,LIU Li-wei,LI Yi-jing
. Construction of Recombinant Lactococcus Lactis Expressing VP4 of Porcine Rotavirus and Analysis of Immunogenicity
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3672-3678 .
[8] . Studies of immunogenicity responses of mice immuned with eukaryon expression plasmid on PRRSV SD2 E containing CpG motifs [J]. Scientia Agricultura Sinica, 2008, 41(5): 1503-1510 .
[9] . Enhancement effect of CpG DNA on the somatostatin DNA vaccine in mice [J]. Scientia Agricultura Sinica, 2007, 40(4): 834-841 .
[10] YAN Ruo-feng . Construction of DNA Vaccines for Haemonchus contortus and the Protective Effects in Goats [J]. Scientia Agricultura Sinica, 2007, 40(12): 2869-2875 .
[11] ,,,,,. Immunization in Pigs Vaccined with DNA Encoding PRRSV GP5 [J]. Scientia Agricultura Sinica, 2006, 39(8): 1651-1658 .
[12] ,,,,. Construction and Immune Responses of the Suicidal DNA Vaccine Co-Expressing GP5 and M of Porcine Reproductive and Respiratory Syndrome Virus [J]. Scientia Agricultura Sinica, 2006, 39(05): 1011-1017 .
[13] ,,,,,,,. Enhanced Protective Efficacy of Avian Influenza DNA Vaccine with Expressive Vector pCAGGS [J]. Scientia Agricultura Sinica, 2006, 39(04): 825-830 .
[14] ,,. Construction and Immunogenicity of Recombinant Phage Expressing the F Gene of Newcastle Disease Virus [J]. Scientia Agricultura Sinica, 2005, 38(06): 1270-1274 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!