Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (20): 4120-4146.doi: 10.3864/j.issn.0578-1752.2015.20.013

• HORTICULTURE·STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Analysis of Aroma Components in Xihu Longjing Tea by Comprehensive Two-Dimensional Gas Chromatography- Time-of-Flight Mass Spectrometry

ZHU Yin1, YANG Ting1, 2, SHI Jiang1, 2, YU Fang-lin1, 3, DAI Wei-dong1, TAN Jun-feng1, GUO Li1, ZHANG Yue1, PENG Qun-hua1, LÜ Hai-peng1, LIN Zhi1   

  1. 1Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008
    2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
    3School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018
  • Received:2015-04-20 Online:2015-10-20 Published:2015-10-20

Abstract: Aroma is one of the most important factors affecting the quality of tea, and identifying the chemical composition of tea aroma will enrich the basic theory of aroma chemistry of tea and establish an important theoretic ground to improve and enhance the aroma quality of tea. 【Method】 Aroma components of Xihu Longjing tea were analyzed by using a comprehensive two- dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and gas chromatography-mass spectrometry (GC-MS), and the separating capacities of GC×GC-TOFMS and GC-MS were compared. Then, the qualitative and relative quantitative analyses of aroma components separated by GC×GC-TOFMS were carried out according to the standard mass spectra in available databases, retention time, structured chromatograms and peak areas. Furthermore, the characteristic aroma compositions of Xihu Longjing tea were discussed according to the odor characteristics of its compounds with relatively high contents (≥0.5%). 【Result】 GC×GC-TOFMS technique displayed the strong superiority on the separating capacity by comparing the total ion chromatograms and chromatographic peaks with GC-MS. A total of 522 common volatile components were identified with a good match, and then further classified into 20 types of compounds, such as enols, alkenes, amines, alkanes, aldehydes, olefin aldehydes, ethers, alcohols, esters, lactones, allyl esters, ketenes, ketones, phenols, organic acids, sulphur compounds, nitrogen heterocyclic compounds, oxygen heterocyclic compounds, aromatic hydrocarbons, and alkynes; and the largest numbers of aromatic hydrocarbons (77), large numbers of alkanes (50), alkenes (43), esters (43) and ketones (41), and the minimum numbers of alkynes (3) were included. Relative quantitative analysis showed that 50 volatile components, including 1-penten-3-ol, cis-hex-3-en-1-ol, linalool, α-terpineol, geraniol, butane, methylcyclopentane, 2,2,4,6,6-pentamethylheptane, dodecane, heneicosane, tetracosane, hentriacontane, acetaldehyde, pentanal, hexanal, furfural, heptanal, phenylacetaldehyde, nonanal, 1-ethoxypropane, 2-ethoxybutane, 1-ethoxybutane, 1,1-diethoxyethane, 1-ethoxypentane, pentanol, tert-butanol, benzyl alcohol, phenethyl alcohol, phytol, diisobutyl phthalate, dibutyl phthalate, ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl) propan-2-yl carbonate, (Z)-hex-3-en-1-yl hexanoate, methyl palmitate, acetoin, 2,4-di-tert-butylphenol, 3-methylbutanoic acid, nonanoic acid, hexadecanoic acid, linoleic acid, octadecanoic acid, dimethyl sulfoxide, benzothiazole, indole, caffeine, linalool oxide (pyranoid), 2,3-dihydrobenzofuran, ethylbenzene, phenylpropane, and 1-methylnaphthalene, were found to be relatively high contents in aroma components of Xihu Longjing tea, suggesting that they played an important role in effecting the aroma quality of Xihu Longjing tea. The analysis of characteristic aroma compositions indicated that enols, aldehydes, alcohols, esters and aromatic hydrocarbons with agreeable smell would be responsible for the outstanding aroma quality of Xihu Longjing tea, and the effects of alkanes, ethers, organic acids and sulphur compounds with no special smell or offensive odor and aroma compounds with low odor threshold values were also worth future research. 【Conclusion】 The successful application of GC×GC-TOFMS technology in tea aroma analysis has improved the number of identified compounds significantly, which could make up for the defects of GC-MS analysis to some extent and supply the advanced technical support for the future in-depth studies on the chemical composition of tea aroma and formation mechanism of tea aroma quality.

Key words: Xihu Longjing Tea, aroma components, aroma characteristic, GC×GC-TOFMS

[1]    Rawat R, Gulati A, Kiran Babu G D, Acharya R, Kaul V K, Singh B. Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chemitry, 2007, 105(1): 229-235.
[2]    宛晓春. 茶叶生物化学. 北京: 中国农业出版社, 2003.
Wan X C. Tea Biochemistry. Beijing: China Agriculture Press, 2003. (in Chinese)
[3]    施梦南, 龚淑英. 茶叶香气研究进展. 茶叶, 2012, 38(1): 19-23.
Shi M N, Gong S Y. Research progress on tea aroma. Journal of Tea, 2012, 38(1): 19-23. (in Chinese)
[4]    Schuh C, Schieberle P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea:  quantitative differences between tea leaves and infusion. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.
[5]    陈宗懋, 杨亚军. 中国茶经. 上海: 上海文化出版社, 2011: 638.
Chen Z M, Yang Y J. The Classic of Chinese Tea. Shanghai: Shanghai Culture Press, 2011: 638. (in Chinese)
[6]    Yang Z, Baldermann S, Watanabe N. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53(2): 585-599.
[7]    叶乃兴, 杨广, 郑乃辉, 杨江帆, 王振康, 梁小虾. 烘青茶坯香气成分的SPME/GC-MS分析. 福建农林大学学报: 自然科学版, 2006, 35(2): 165-168.
Ye N X, Yang G, Zheng N H, Yang J F, Wang Z K, Liang X X. Analysis of the aroma of refined baked green tea using SPME /GC-MS. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2006, 35(2): 165-168. (in Chinese)
[8]    Wang K B, Liu F, Liu Z H, Huang J A, Xu H, Chen J H, Gong Y S, Yang X H. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatographmass spectrometer. International Journal of Food Science & Technology, 2011, 46(7): 1406-1412.
[9]    Jumtee K, Komura H, Bamba T, Fukusaki E. Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. Journal of Bioscience and Bioengineering, 2011, 112(3): 252-255.
[10]   Sereshti H, Samadi S, Jalali-Heravi M. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid–liquid microextraction coupled with gas chromatography. Journal of Chromatography A, 2013, 1280: 1-8.
[11]   Murray J A. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2012, 1261: 58-68.
[12]   Gogus F, Ozel M Z, Kocak D, Hamilton J F, Lewis A C. Analysis of roasted and unroasted Pistacia terebinthus volatiles using direct thermal desorption-GC×GC-TOF/MS. Food Chemistry, 2011, 129(3): 1258-1264.
[13]   Kiefl J, Pollner G, Schieberle P. Sensomics analysis of key hazelnut odorants (Corylus avellana L. Tonda Gentile) using comprehensive two-dimensional gas chromatography in combination with time-of- flight mass spectrometry (GC×GC-TOF-MS). Journal of Agricultural and Food Chemistry, 2013, 61(22): 5226-5235.
[14]   Ding Y, Zhu L, Liu S, Yu H, Dai Y. Analytical method of free and conjugated neutral aroma components in tobacco by solvent extraction coupled with comprehensive two-dimensional gas chromatography– time-of-flight mass spectrometry. Journal of Chromatography A, 2013, 1280: 122-127.
[15]   Rocha S M, Caldeira M, Carrola J, Santos M, Cruz N, Duarte I F. Exploring the human urine metabolomic potentialities by comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry. Journal of Chromatography A. 2012, 1252: 155-163.
[16]   Mohler R E, Dombek K M, Hoggard J C, Young E T, Synovec R E. Comprehensive two-dimensional gas chromatography time-of- flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Analytical Chemistry, 2006, 78(8): 2700-2709.
[17]   Weldegergis B T, Crouch A M, G?recki T, Villiers A de. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines. Analytica Chimica Acta, 2011, 701(1): 98-111.
[18]   许国旺, 石先哲. 多维色谱研究的最新进展. 色谱, 2011, 29(2): 97-98.
Xu G W, Shi X Z. The latest progress in the study of multidimensional chromatography. Chinese Journal of Chromatography, 2011, 29(2): 97-98. (in Chinese)
[19]   谢诚, 欧昌荣, 曹锦轩, 汤海青. 全二维气相色谱-飞行时间质谱法分析糟带鱼挥发性风味成分. 现代食品科技, 2014, 30(2): 234-243.
Xie C, Ou C R, Cao J X, Tang H Q. Analysis of the volatile compounds of vinasse hairtail through two comprehensive dimensional gas chromatography–time of flight mass spectrometry. Modern Food Science and Technology, 2014, 30(2): 234-243. (in Chinese)
[20]   韩婷, 毛健, 姬中伟, 黄桂东. 滁菊挥发性成分的全二维气相色谱/飞行时间质谱研究. 食品科学, 2013, 34(2): 159-164.
Han T, Mao J, Ji Z W, Huang G D. Analysis of volatile components in Chrysanthemum morifolium flowers by comprehensive two- dimensional gas chromatography/time-of-flight mass spectrometry. Food Science, 2013, 34(2): 159-164. (in Chinese)
[21]   Zhang L, Zeng Z D, Zhao C X, Kong H W, Lu X, Xu G. W. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography- time-of-flight mass spectrometry and multivariate data analysis. Journal of Chromatography A, 2013, 1313: 245-252.
[22]   程权, 杨方, 李捷, 卢声宇, 蓝锦昌, 江锦彬. 顶空固相微萃取-全二维气相色谱/飞行时间质谱法分析闽南乌龙茶中的挥发性成分及其在分类中的应用. 色谱, 2015, 33(2): 174-181.
Cheng Q, Yang F, Li J, Lu S Y, Lan J C, Jiang Y B. Analysis of the volatile components in Minnan oolong tea by headspace solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time of flight mass spectrimetry and the application in its variety identification. Chinese Journal of Chromatography, 2015, 33(2): 174-181. (in Chinese)
[23]   汪厚银, 李志, 张剑, 史波林, 支瑞聪, 赵镭. 基于气质联用/气相色谱-嗅觉测定技术的西湖龙井茶特征香气成分分析. 食品科学, 2012, 33(8): 248-251.
Wang H Y, Li Z, Zhang J, Shi B L, Zhi R C, Zhao L. Determination of characteristic aromatic components in Xihu Longjing tea by GC-MS and GC-Olfactometry. Food Science, 2012, 33(8): 248-251. (in Chinese)
[24]   孙彦, 陈倩, 郭雯飞. 龙井茶的香气成分分析与比较. 浙江大学学报: 理学版, 2013, 40 (2): 186-190.
Sun Y, Chen Q, Guo W F. Analysis of the aromatic compositions in Longjing teas. Journal of Zhejiang University: Science Edition, 2013, 40(2): 186-190. (in Chinese)
[25]   张新亭, 王梦馨, 韩宝瑜. 3个不同地域龙井茶香气组成异同的解析. 茶叶科学, 2014, 34(4): 344-354.
Zhang X T, Wang M X, Han B Y. Analysis on similarities and differences of aromatic composition in Longjing teas from three producing regions. Journal of Tea Science, 2014, 34(4): 344-354. (in Chinese)
[26]   龙立梅, 宋沙沙, 李柰, 樊琛, 李小波, 曹学丽. 3种名优绿茶特征香气成分的比较及种类判别分析. 食品科学, 2015, 36(2): 114-119.
Long L M, Song S S, Li N, Fan C, Li X B, Cao X L. Comparisons of characteristic aroma components and cultivar discriminant analysis of three varieties of famous green tea. Food Science, 2015, 36(2): 114-119. (in Chinese)
[27]   Lee S J, Ahn B. Biological resistance of hydroxychloroquine for Plasmodium vivax Malaria in the Republic of Korea. Food Chemistry, 2009, 114(4): 600-604.
[28]   苗爱清, 吕海鹏, 孙世利, 王力, 庞式, 赖兆祥, 曾琼, 林智. 乌龙茶香气的HS-SPME-GC-MS/GC-O研究. 茶叶科学, 2010, 30 (增刊1): 583-587.
Miao A Q, Lv H P, Sun S L, Wang L, Pang S, Lai Z X, Zeng Q, Lin Z. Aroma components of oolong tea by HS-SPME-GC-MS and GC-O. Journal of Tea Science, 2010, 30(Suppl.1): 583-587. (in Chinese)
[29]   何聪聪, 苏柯冉, 刘梦雅, 刘建彬, 刘野, 宋焕禄. 基于AEDA 和OAV 值确定西瓜汁香气活性化合物的比较. 现代食品科技, 2014, 30(7): 276-285.
He C C, Su K R, Liu M Y, Liu J B, Liu Y, Song H L. Identification of aroma-active compounds in watermelon juice by AEDA and OAV calculation. Modern Food Science and Technology, 2014, 30(7): 276-285. (in Chinese)
[30]   Zeller A, Rychlik M. Character impact odorants of fennel fruits and fennel tea. Journal of Agricultural and Food Chemistry, 2006, 54(10): 3686-3692.
[31]   Milo C, Grosch W. Changes in the odorants of boiled salmon and cod as affected by the storage of the raw material. Journal of Agricultural and Food Chemistry, 1996, 44(8): 2366-2371.
[32]   Ho C T, Zheng X, Li S M. Tea aroma formation. Food Science and Human Wellness, 2015, 4(1): 9-27.
[33]   兰欣, 汪东风, 张莉, 赵纪合. HS-SPME法结合GC-MS分析崂山绿茶的香气成分. 食品与机械, 2012, 28(5): 96-101.
Lan X, Wang D F, Zhang L, Zhao J H. Aromatic analysis of green tea in Lao Mountain by HS-SPME and GC-MS. Food & Machinery, 2012, 28(5): 96-101. (in Chinese)
[34]   钟罗宝, 陈谷. 顶空进样器在快速检测食品美拉德反应风味物质中的新应用. 现代食品科技, 2009, 25(9): 1091-1095.
Zhong L B, Chen G. New application of headspace sampler in rapid detection of flavors from maillard reaction in foods. Modern Food Science and Technology, 2009, 25(9): 1091-1095. (in Chinese)
[35]   史波林, 赵镭, 支瑞聪, 席兴军, 朱大洲. 应用电子鼻判别西湖龙井茶香气品质. 农业工程学报, 2011, 27(增刊2): 302-306.
Shi B L, Zhao L, Zhi R C, Xi X J, Zhu D Z. Aroma quality discrimination of Xihu-Longjing tea by electronic nose. Transactions of the CSAE, 2011, 27(Supp.2): 302-306. (in Chinese)
[36]   代毅, 须海荣. 采用SPME-GC/MS联用技术对龙井茶香气成分的测定分析. 茶叶, 2008, 34(2): 85-88.
Dai Y, Xu H R. Analysis on aromatic components of Longjing tea using SPME-GC/MS methods. Journal of Tea, 2008, 34(2): 85-88. (in Chinese)
[37]   Hasim K, Serkan S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. Journal of the Science of Food and Agriculture, 2011, 91(10): 1855-1862.
[38]   于爱丽, 朱永哲. 绿茶的香气成分及其在加工中的变化. 蚕桑茶叶通讯, 2011, 2: 23-24.
Yu A L, Zhu Y Z. The aromatic components and changes during processing. New Letter of Sericulture and Tea, 2011, 2: 23-24. (in Chinese)
[39]   Buttery R G, Turnbaugh J G, Ling L C. Contribution of volatiles to rice aroma. Journal of Agricultural and Food Chemistry, 1988, 36(5): 1006-1009.
[40]   张华. 反式-2-烯醛类化合物和反,反-2, 4-二烯醛类化合物在香精中的应用. 香料香精化妆品, 2006, 4(2): 30-34.
Zhang H. The Application of trans-2-O lifine and trans, trans-2, 4-Dienenal in the flavor and fragrance. Flavour Fragrance Comsmetics, 2006, 4(2): 30-34. (in Chinese)
[1] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[2] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[3] AiHua WANG,HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG. Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht. [J]. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054.
[4] HUANG LiPeng, ZHANG XiuYuan, WANG yang, FU YanDong, ZHAI Heng, SHAO XiaoJie. Effects of Seawater Irrigation on Fruit Quality of Cabernet Sauvignon [J]. Scientia Agricultura Sinica, 2017, 50(18): 3581-3590.
[5] CHEN Xue-Sen, SONG Jun, GAO Li-Ping, JI Xiao-Hao, ZHANG Zong-Ying, MAO Zhi-Quan, ZHANG Yan-Min, LIU Da-Liang, ZHANG Rui, LI Min. Developing Mechanism of Fruits Texture in ‘Jonagold’ Apple and Its Crisp Flesh Sport [J]. Scientia Agricultura Sinica, 2014, 47(4): 727-735.
[6] ZHANG Ying,LI Xin-lei,WANG Yan,TIAN Min,FAN Miao-hua
. Changes of Aroma Components in Oncidium Sharry Baby in Different Florescence and Flower Parts
[J]. Scientia Agricultura Sinica, 2011, 44(1): 110-117 .
[7] SONG Zhao-peng,WU Sheng-jiang,GAO Yuan,XU Zi-cheng,ZHANG Wei-jian,GONG Chang-rong
. The Degradation Mechanism of Carotenoids in Flue-Cured Tobacco and the Changes of the Related Aroma Components in the Yellowing Stage During the Bulk Curing Process
[J]. Scientia Agricultura Sinica, 2010, 43(20): 4246-4254 .
[8] TIAN Chang-ping,WANG Yan-ling,LIU Zun-chun,WANG Chuan-zeng,SUN Jia-zheng,WANG Na,CHEN Xue-sen
. Effect of 1-Methylcyclopropene and Nitric Oxide on Main Fruit Quality of ‘Whangkeumbae’ Pear and Related Enzymes of Fatty Acid Metabolism During Storage
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2962-2972 .
[9] ZHANG Chun-yu,LI Ya-dong,ZHANG Zhi-dong,LIU Hai-guang,WU Lin,WANG Jing-ying
. Changes of Aroma Components of Different Developmental Fruits of High-Bush Blueberry #br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3216-3223 .
[10] . Advances in the study of Tomato Aroma Components [J]. Scientia Agricultura Sinica, 2008, 41(5): 1444-1451 .
[11] . Changes of Aroma Components in‘Hongdeng’Sweet Cherry [J]. Scientia Agricultura Sinica, 2007, 40(6): 1222-1228 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!