Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4794-4805.doi: 10.3864/j.issn.0578-1752.2024.23.016

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Research Progress on Postharvest Disease and Its Control Techniques of Agaricus bisporus

WANG WenJun1,2,3(), JIANG HaiYan1, TIAN Hao1, MENG Kuo1, GOU WenQing1   

  1. 1 College of Food Science, Southwest University, Chongqing 400715
    2 Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715
    3 Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715
  • Received:2024-06-05 Accepted:2024-10-08 Online:2024-12-01 Published:2024-12-07

Abstract:

Agaricus bisporus (A. bisporus) is one of the most widely cultivated, distributed, and highest-yielding edible fungi in the world. It has excellent qualities due to rich in nutrients and protein, while low in fat, as a food, and tastes tender and delicious. In some regions of China, the A. bisporus industry plays an important role in poverty alleviation and in promoting rural economic development. The mushroom is primarily consumed as fresh food, so appearance and freshness are the main factors determining its commercial value. However, due to its vigorous postharvest physiological activity and lack of a distinct protective structure on the surface, it is highy susceptible to enzymatic browning caused by external factors, such as impact, temperature, and humidity. Additionally, it is easy to be infected by pathogens, such as Pseudomonas, Trichoderma, and Verticillium, leading to browning, decay, and rot, which significantly diminish its appearance, edibility, and commercial value. Due to the large number and variety of pathogens, the current research on postharvest diseases of A. bisporus is mainly focused on disease symptoms, with limited studies on the pathogenic mechanisms of various pathogens. Disease prevention and control for edible fungi like A. bisporus primarily occur during the agricultural cultivation stage. However, postharvest diseases are also unavoidable. Currently, integrated management approaches using physical and chemical methods are commonly employed, such as low temperature and pressure, irradiation, modified atmosphere packaging, and the application of chemical agents like benzoic acid, ascorbic acid, and 1-Methylcyclopropene. Green and safe biological control technologies have become a research hotspot in recent years, including the use of antagonistic bacteria from the genera Pseudomonas and Bacillus. However, many studies on these antagonistic bacteria are still at the laboratory stage, and their practical applications are still a long way off. In recent years, with the expansion of A. bisporus cultivation and industry, the sector has faced numerous urgent issues, including the complexity and diversity of pathogens, which makes it difficult to take targeted measures to control the spread of pathogens promptly, and the lack of safe and effective control products and systematic control measures. To advance research on postharvest diseases, browning mechanisms, and disease control in A. bisporus, this review introduced the main infectious and physiological diseases affecting A. bisporus, systematically summarized the melanogenesis pathways involved in browning mechanisms, and reviewed the current research progress in disease control. This work aimed to provide a theoretical foundation for postharvest preservation techniques for A. bisporus and to contribute to the green, healthy, and sustainable development of the edible fungi industry.

Key words: Agaricus bisporus, physiological diseases, infectious diseases, browning mechanism, preservation techniques

Table 1

The main bacterial disease of Agaricus bisporus"

细菌性病害
Bacterial disease
病原菌
Pathogenic bacteria
染病症状
Symptom of infection
参考文献
Reference
褐斑病
Brown blotch disease
托拉斯假单胞菌
P. tolaasii
表面褐色凹陷斑点
Brown sunken spots on the surface
[7]
菌柄坏死病
Internal stipe necrosis disease
美洲爱文氏菌
E. americana
菌柄出现棕色坏死
Brown necrosis of the stipe
[8]
空腔病
Cavity disease
伯克霍尔德菌
B. gladioli pv. agaricicola
从菌盖到菌柄内部的斑点或侵蚀
Spotting or erosion from the cap to the inside of the stipe
[9]
干腐病
Mummy disease
荧光假单胞菌
P. fluorescens
菌盖歪斜,菌柄膨胀
Caps skewed, stems swollen
[10]

Table 2

The main fungal disease of Agaricus bisporus"

真菌性病害
Fungal disease
病原菌
Pathogenic bacteria
染病症状
Symptom of infection
参考文献
Reference
干泡病
Dry bubble disease
菌生轮枝霉
V. fungicola
菌柄灰白色干瘪状,菌盖黄褐色皮革状
Stalk grayish-white shriveled, cap yellowish-brown leathery
[20]
绿霉病
Green mould disease
哈茨木霉,侵袭性木霉
T. harzianum, T. aggressivum
灰白色霉层,绿色菌丝,腐烂
Grayish-white mold, green mycelium, rotting
[18,27]
褐腐病
Wet bubble disease
有害疣孢霉
M. perniciosa
畸形,腐烂,有琥珀色液滴,散发恶臭气味
Malformation, rotting, amber droplets, foul odor
[21]
蛛网病
Cobweb disease
嗜菌葡枝霉
C. mycophilum
白色蛛网状菌丝团,菌盖棕色斑点,子实体呈淡褐色,腐烂
White cobwebby mycelium mass, brown spots on the cap, light brown, rotting substrate
[25]

Fig. 1

Metabolic pathways of melanin in Agaricus bisporus"

[1]
鲍大鹏, 邹根, 裴晓东, 杨瑞恒, 李正鹏, 谭琦. 中国食用菌产业实现高质量现代化发展的路径探讨. 食用菌学报, 2022, 29(6): 103-110.
BAO D P, ZOU G, PEI X D, YANG R H, LI Z P, TAN Q. Discussion on the path toward high quality modernization of edible fungi industry in China. Acta Edulis Fungi, 2022, 29(6): 103-110. (in Chinese)
[2]
李晓, 李玉. 中国秸秆菌业现状及研究进展. 菌物研究, 2024, 22(2): 118-129.
LI X, LI Y. The status and progress of straw-edible mushroom industry in China. Journal of Fungal Research, 2024, 22(2): 118-129. (in Chinese)
[3]
商立超. 一种双孢菇复合生物保鲜剂的研制及保鲜效果研究[D]. 泰安: 山东农业大学, 2022.
SHANG L C. Preparation of a compound biological preservative for Agaricus bisporus and study on its preservative effect[D]. Taian: Shandong Agricultural University, 2022. (in Chinese)
[4]
吕宇, 闫晓明, 刘方志. 双孢菇的营养和药用价值研究进展. 江西农业学报, 2022, 34(3): 64-72.
Y, YAN X M, LIU F Z. Research progress in nutritional and medicinal value of Agaricus bisporus. Acta Agriculturae Jiangxi, 2022, 34(3): 64-72. (in Chinese)
[5]
张慢, 邢苏徽, 千春录, 刘俊, 阚娟, 金昌海. 7种食用菌的营养成分及抗氧化性分析. 食品科技, 2022, 47(6): 120-126.
ZHANG M, XING S H, QIAN C L, LIU J, KAN J, JIN C H. Analysis of the nutritional components and antioxidant properties of seven species of edible mushrooms. Food Science and Technology, 2022, 47(6): 120-126. (in Chinese)
[6]
任心如, 韦雅芳, 李静, 殷菲胧, 董新红, 李霞, 单杨. 外源GABA对双孢蘑菇细胞壁代谢及木质化进程的影响. 食品工业科技, 2020, 41(6): 119-123, 130.
REN X R, WEI Y F, LI J, YIN F L, DONG X H, LI X, SHAN Y. Effects of exogenous GABA on cell wall metabolism and lignification of Agaricus bisporus. Science and Technology of Food Industry, 2020, 41(6): 119-123, 130. (in Chinese)
[7]
YANG X M, YANG K X, WANG X H, WANG Y T, ZHAO Z Y, MENG D M. Transcriptomic analysis reveals the mechanism of bacterial disease resistance of postharvest button mushroom (Agaricus bisporus). Physiological and Molecular Plant Pathology, 2022, 122: 101903.
[8]
ALI ASLANI M, HARIGHI B, ABDOLLAHZADEH J. Screening of endofungal bacteria isolated from wild growing mushrooms as potential biological control agents against brown blotch and internal stipe necrosis diseases of Agaricus bisporus. Biological Control, 2018, 119: 20-26.
[9]
ROY CHOWDHURY P, HEINEMANN J A. The general secretory pathway of Burkholderia gladioli pv. Agaricicola BG164R is necessary for cavity disease in white button mushrooms. Applied and Environmental Microbiology, 2006, 72(5): 3558-3565.
[10]
杨可心. 双孢蘑菇采后病害的防御机制及MeJA在诱导抗病中的作用[D]. 天津: 天津科技大学, 2020.
YANG K X. The disease defense mechanism of postharvest Agaricus bisporus andthe role of MeJA in the induction of disease resistance[D]. Tianjin:Tianjin University of Science & Technology, 2020. (in Chinese)
[11]
孙若兰, 肖靓, 易有金, 邓后勤, 辛晓菲, 朱利红, 桑毅媛, 方正初. 双孢蘑菇采后贮藏保鲜研究进展. 食品科学, 2021, 42(1): 333-340.
SUN R L, XIAO L, YI Y J, DENG H Q, XIN X F, ZHU L H, SANG Y Y, FANG Z C. Progress in techniques for postharvest quality preservation of Agaricus bisporus. Food Science, 2021, 42(1): 333-340. (in Chinese)
[12]
TAPARIA T, KRIJGER M, HAYNES E, ELPHINSTONE J G, NOBLE R, VAN DER WOLF J. Molecular characterization of Pseudomonas from Agaricus bisporus caps reveal novel blotch pathogens in Western Europe. BMC Genomics, 2020, 21(1): 505.
[13]
黄在兴, 刘斌. 食用菌托拉氏假单胞菌相关病害研究进展. 中国植保导刊, 2021, 41(11): 15-23.
HUANG Z X, LIU B. Advances in edible mushrooms diseases caused by Pseudomonas tolaasii. China Plant Protection, 2021, 41(11): 15-23. (in Chinese)
[14]
SOLER-RIVAS C, ARPIN N, OLIVIER J M, WICHERS H J. The effects of tolaasin, the toxin produced by Pseudomonas tolaasii on tyrosinase activities and the induction of browning in Agaricus bisporus fruiting bodies. Physiological and Molecular Plant Pathology, 1999, 55(1): 21-28.
[15]
SOLER-RIVAS C, ARPIN N, OLIVIER J M, WICHERS H J. Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin- containing preparation. Mycological Research, 1997, 101(3): 375-382.
[16]
王雅婷. AbMYB11激活苯丙烷代谢调控双孢蘑菇抗病性的研究[D]. 天津: 天津科技大学, 2023.
WANG Y T. AbMYB11 regulates disease resistance of Agaricus bisporus by activating phenylpropane metabolism[D]. Tianjin: Tianjin University of Science & Technology, 2023. (in Chinese)
[17]
MADBOULY A, EL-SHATOURY E, ABOUZEID M. Etiology of stipe necrosis of cultivated mushrooms (Agaricus bosporus) in Egypt. Phytopathologia Mediterranea, 2014, 53(1): 124-129.
[18]
KOSANOVIC D, GROGAN H, KAVANAGH K.Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biology, 2020, 124(9): 814-820.
[19]
刘正慧, 李丹, SOSSAH Frederick Leo, 沈宏艳, OKORLEY Benjamin Azu, 付永平. 食用菌主要病原真菌和细菌. 菌物研究, 2018, 16(3): 158-163.
LIU Z H, LI D, LEO S F, SHEN H Y, AZU O, FU Y P. Major pathogenic fungi and bacteria in edible fungi. Journal of Fungal Research, 2018, 16(3): 158-163. (in Chinese)
[20]
黄建春, 王倩, 宋晓霞, 陈辉, 张津京, 隽加香, 沈新芬. 双孢蘑菇褐斑病(干泡病)防治技术. 食用菌, 2018, 40(3): 66-67, 82.
HUANG J C, WANG Q, SONG X X, CHEN H, ZHANG J J, JUAN J X, SHEN X F. Prevention and control technique of dry bubble disease in Agaricus bisporus. Edible Fungi, 2018, 40(3): 66-67, 82. (in Chinese)
[21]
张春兰, 孙灿, 金正文, 曾云霞, 徐玮琦, 周晨, 李玉. 双孢蘑菇湿泡病抗病性鉴定方法研究. 中国食用菌, 2021, 40(2): 94-100, 105.
ZHANG C L, SUN C, JIN Z W, ZENG Y X, XU W Q, ZHOU C, LI Y. A method to evaluation the resistance of Agaricus bisporus to wet bubble disease. Edible Fungi of China, 2021, 40(2): 94-100, 105. (in Chinese)
[22]
周春元. 双孢蘑菇湿泡病病原学及其致病机理研究[D]. 长春: 吉林农业大学, 2014.
ZHOU C Y. The etiology and pathogenic mechanisms of Mycogone perniciosa causing wet bubble disease on Agaricus bisporus [D]. Changchun: Jilin Agricultural University, 2014. (in Chinese)
[23]
秦文韬, 王守现, 荣成博, 宋忠娟, 刘宇. 我国食用菌病害发生与防控概况. 中国食用菌, 2020, 39(12): 1-7.
QIN W T, WANG S X, RONG C B, SONG Z J, LIU Y. Occurrence and management of edible fungus diseases in China. Edible Fungi of China, 2020, 39(12): 1-7. (in Chinese)
[24]
LI D, SOSSAH F L, YANG Y, LIU Z H, DAI Y T, SONG B, FU Y P, LI Y. Genetic and pathogenic variability of Mycogone perniciosa isolates causing wet bubble disease on Agaricus bisporus in China. Pathogens, 2019, 8(4): 179.
[25]
曹满堂, 李宾, 李宏, 方昌春, 何培新. 食用菌蛛网病研究进展. 食用菌学报, 2020, 27(3): 127-136.
CAO M T, LI B, LI H, FANG C C, HE P X. Advances in mushroom cobweb disease. Acta Edulis Fungi, 2020, 27(3): 127-136. (in Chinese)
[26]
兰玉菲, 安秀荣, 王庆武, 唐丽娜. 双孢蘑菇蛛网病病菌生物学特性研究. 中国食用菌, 2017, 36(4): 62-65.
LAN Y F, AN X R, WANG Q W, TANG L N. Biological characteristics of Cladobotryum mycophilum causing cobweb disease on Agaricus bisporus. Edible Fungi of China, 2017, 36(4): 62-65. (in Chinese)
[27]
MAMOUN M L, SAVOIE J M, OLIVIER J M. Interactions between the pathogen Trichoderma harzianum Th2 and Agaricus bisporus in mushroom compost. Mycologia, 2000, 92(2): 233.
[28]
王霆. 双孢蘑菇采后品质劣变及衰老机理的研究[D]. 兰州: 甘肃农业大学, 2021.
WANG T. Study on the quality deterioration and senescence mechanism of postharvest mushroom (Agaricus bisporus)[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese)
[29]
徐冬颖, 姜爱丽, 胡文忠, 杨柳, 陈晨. 双孢菇保鲜及抗褐变处理研究现状. 食品与发酵工业, 2016, 42(6): 254-259.
XU D Y, JIANG A L, HU W Z, YANG L, CHEN C. The preservation and anti-browning treatment progress of Agaricus bisporus. Food and Fermentation Industries, 2016, 42(6): 254-259. (in Chinese)
[30]
ZHU Y F, ELLIOT M, ZHENG Y H, CHEN J, CHEN D Z, DENG S G. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenol oxidase subjected to atmospheric cold plasma treatment. Food Chemistry, 2022, 386: 132707.
[31]
WEIJN A, BASTIAAN-NET S, WICHERS H J, MES J J. Melanin biosynthesis pathway in Agaricus bisporus mushrooms. Fungal Genetics and Biology, 2013, 55: 42-53.
[32]
CONESA A, PUNT P J, VAN DEN HONDEL C A M J J. Fungal peroxidases: molecular aspects and applications. Journal of Biotechnology, 2002, 93(2): 143-158.

doi: 10.1016/s0168-1656(01)00394-7 pmid: 11738721
[33]
LANKINEN P, HILDÉN K, ARO N, SALKINOJA-SALONEN M, HATAKKA A. Manganese peroxidase of Agaricus bisporus: Grain bran-promoted production and gene characterization. Applied Microbiology and Biotechnology, 2005, 66(4): 401-407.
[34]
HOFRICHTER M, ULLRICH R, PECYNA M J, LIERS C, LUNDELL T. New and classic families of secreted fungal heme peroxidases. Applied Microbiology and Biotechnology, 2010, 87(3): 871-897.

doi: 10.1007/s00253-010-2633-0 pmid: 20495915
[35]
陈海雁, 陈向东, 俞黎姗. 黑色素形成机理、生物学功能和应用开发的研究进展. 生物资源, 2020, 42(6): 652-659.
CHEN H Y, CHEN X D, YU L S. Biosynthesis, function and applications of melanin. Biotic Resources, 2020, 42(6): 652-659. (in Chinese)
[36]
SUI X, MENG Z, DONG T T, FAN X T, WANG Q G. Enzymatic browning and polyphenol oxidase control strategies. Current Opinion in Biotechnology, 2023, 81: 102921.
[37]
GAO W, WEIJN A, BAARS J J P, MES J J, VISSER R G F, SONNENBERG A S M. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genetics and Biology, 2015, 77: 69-81.
[38]
JO I H, KIM J, AN H, LEE H Y, SO Y S, RYU H, SUNG G H, SHIM D, CHUNG J W. Pseudo-chromosomal genome assembly in combination with comprehensive transcriptome analysis in Agaricus bisporus strain KMCC00540 reveals mechanical stimulus responsive genes associated with browning effect. Journal of Fungi, 2022, 8(8): 886.
[39]
李建新, 王卓, 李沛, 刘亚平. 低压对双孢菇贮藏品质和生理的影响. 保鲜与加工, 2019, 19(4): 24-29.
LI J X, WANG Z, LI P, LIU Y P. Effect of low-pressure on storage quality and physiology of Agaricus bisporus. Storage and Process, 2019, 19(4): 24-29. (in Chinese)
[40]
邸倩倩, 杨兆丹, 刘斌, 吴子健, 陈存坤. 真空预冷压力对双孢菇贮藏效果的研究. 保鲜与加工, 2016, 16(6): 30-35.
DI Q Q, YANG Z D, LIU B, WU Z J, CHEN C K. Effect of different vacuum pre-cooling pressure on storage quality of Agaricus bisporus. Storage and Process, 2016, 16(6): 30-35. (in Chinese)
[41]
ZHANG L M, LIU Z L, WANG X Y, DONG S, SUN Y, ZHAO Z T. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biology and Technology, 2019, 155: 47-56.
[42]
SUBRAHMANYAM K, GUL K, SEHRAWAT R, ALLAI F M. Impact of in-package cold plasma treatment on the physicochemical properties and shelf life of button mushrooms (Agaricus bisporus). Food Bioscience, 2023, 52: 102425.
[43]
PAN J, SUN K, LIANG Y D, SUN P, YANG X H, WANG J, ZHANG J, ZHU W D, FANG J, BECKER K H. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. Journal of Endodontics, 2013, 39(1): 105-110.
[44]
TAPPI S, BERARDINELLI A, RAGNI L, DALLA ROSA M, GUARNIERI A, ROCCULI P. Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 2014, 21: 114-122.
[45]
POURBAGHER R, ABBASPOUR-FARD M H, SOHBATZADEH F, ROHANI A. In vivo antibacterial effect of non-thermal atmospheric plasma on Pseudomonas tolaasii, a causative agent of Agaricus bisporus blotch disease. Food Control, 2021, 130: 108319.
[46]
XIA R R, HOU Z S, XU H R, LI Y T, SUN Y, WANG Y F, ZHU J Y, WANG Z J, PAN S, XIN G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Critical Reviews in Food Science and Nutrition, 2024, 64(23): 8445-8463.
[47]
YAN J W, BAN Z J, LUO Z S, YU L F, WU Q, LI D, ZAHEDI S M, LI L. Variation in cell membrane integrity and enzyme activity of the button mushroom (Agaricus bisporus) during storage and transportation. Journal of Food Science and Technology, 2021, 58(5): 1655-1662.
[48]
WU W N, NI X Y, SHAO P, GAO H Y. Novel packaging film for humidity-controlled manipulating of ethylene for shelf-life extension of Agaricus bisporus. LWT-Food Science and Technology, 2021, 145: 111331.
[49]
ZHANG P R, FANG D L, PEI F, WANG C, JIANG W, HU Q H, MA N. Nanocomposite packaging materials delay the browning of Agaricus bisporus by modulating the melanin pathway. Postharvest Biology and Technology, 2022, 192: 112014.
[50]
罗琪. 双孢菇护色保质研究[D]. 南昌: 南昌大学, 2023.
LUO Q. Color protection and quality preservation research on Agaricus bisporus [D]. Nanchang: Nanchang University, 2023. (in Chinese)
[51]
颉敏华, 李梅, 吴小华, 田世龙, 仁爱民, 张桂香. 双孢蘑菇保鲜剂及贮运保鲜技术研究. 中国食用菌, 2010, 29(3): 46-47, 59.
XIE M H, LI M, WU X H, TIAN S L, REN A M, ZHANG G X. Studies on preservative agents and storage and transportation technology of Agaricus bisporus. Edible Fungi of China, 2010, 29(3): 46-47, 59. (in Chinese)
[52]
饶克诚, 黄文, 王益, 史德芳, 高虹, 刘莹. 食用菌品质评价因素及保鲜技术研究进展. 食品工业科技, 2023, 44(17): 454-462.
RAO K C, HUANG W, WANG Y, SHI D F, GAO H, LIU Y. Research advances on quality evaluation factors and preservation technology of edible mushrooms. Science and Technology of Food Industry, 2023, 44(17): 454-462. (in Chinese)
[53]
王赵改, 杨慧, 朱广成, 杨丰菊. 复方保鲜剂对双孢蘑菇保鲜效果的影响. 河南农业科学, 2014, 43(1): 93-96, 109.
WANG Z G, YANG H, ZHU G C, YANG F J. Effect of composite preservative on post-harvest fresh-keeping of Agaricus bisporus. Journal of Henan Agricultural Sciences, 2014, 43(1): 93-96, 109. (in Chinese)
[54]
徐冬颖, 顾思彤, 周福慧, 陈晨, 姜爱丽, 胡文忠. 纳他霉素处理对鲜切双孢菇褐变的抑制机理. 食品科学, 2019, 40(17): 255-262.

doi: 10.7506/spkx1002-6630-20180926-284
XU D Y, GU S T, ZHOU F H, CHEN C, JIANG A L, HU W Z. Inhibitory mechanism of natamycin on browning of fresh-cut Agaricus bisporus. Food Science, 2019, 40(17): 255-262. (in Chinese)
[55]
JIANG T J. Effect of natamycin in combination with pure oxygen treatment on postharvest quality and selected enzyme activities of button mushroom (Agaricus bisporus). Journal of Agricultural and Food Chemistry, 2012, 60(10): 2562-2568.

doi: 10.1021/jf205160c pmid: 22352420
[56]
陈存坤, 董成虎, 纪海鹏, 李春媛, 于晋泽, 王文生. 臭氧处理对双孢菇采后生理和贮藏品质的影响. 食品研究与开发, 2015, 36(17): 155-158.
CHEN C K, DONG C H, JI H P, LI C Y, YU J Z, WANG W S. Effect of ozone treatments on storage of post-harvest physiology and storage quality of Agaricus bisporus. Food Research and Development, 2015, 36(17): 155-158. (in Chinese)
[57]
XU Y Y, TIAN Y, MA R N, LIU Q H, ZHANG J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry, 2016, 197: 436-444.
[58]
GAO M S, FENG L F, JIANG T J. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chemistry, 2014, 149: 107-113.

doi: 10.1016/j.foodchem.2013.10.073 pmid: 24295683
[59]
代惠芹, 刘树泽, 高琪, 于海霞, 姚连谋, 乔勇进. 大蒜素处理对双孢菇保鲜效果的影响. 北方园艺, 2022(11): 82-88.
DAI H Q, LIU S Z, GAO Q, YU H X, YAO L M, QIAO Y J. Effects of allicin treatment on preservation of Agaricus bisporus. Northern Horticulture, 2022(11): 82-88. (in Chinese)
[60]
GÓRSKI R, DORNA H, ROSIŃSKA A, SZOPIŃSKA D, KAŁUŻEWICZ A. Effects of essential oils on in vitro growth of fungi Cladobotryum dendroides and Mycogone perniciosa infecting button mushroom. Ecological Chemistry and Engineering S, 2021, 28(3): 411-427.
[61]
LAHLALI R, PENG G, GOSSEN B D, MCGREGOR L, YU F Q, HYNES R K, HWANG S F, MCDONALD M R, BOYETCHKO S M. Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 2013, 103(3): 245-254.
[62]
PANDIN C, LE COQ D, DESCHAMPS J, VÉDIE R, ROUSSEAU T, AYMERICH S, BRIANDET R. Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease. Journal of Biotechnology, 2018, 278: 10-19.
[63]
蔡少芬, 温志强, 张婷, 温建荣, 谢宝贵. 对一种可以抑制疣孢霉生长的细菌的鉴定. 食用菌学报, 2009, 16(1): 92-94.
CAI S F, WEN Z Q, ZHANG T, WEN J R, XIE B G. Identification of a bacterium inhibiting the mycelial growth of Mycogone perniciosa. Acta Edulis Fungi, 2009, 16(1): 92-94. (in Chinese)
[64]
PANDIN C, DARSONVAL M, MAYEUR C, LE COQ D, AYMERICH S, BRIANDET R. Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Applied and Environmental Microbiology, 2019, 85(12): e00327-19.
[65]
张春兰. 对双孢蘑菇褐腐病致病菌有害疣孢霉的研究[D]. 长春: 吉林农业大学, 2015.
ZHANG C L. Studies on wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa [D]. Changchun: Jilin Agricultural University, 2015. (in Chinese)
[66]
GHASEMI S, HARIGHI B, AZIZI A, MOJARRAB M. Reduction of brown blotch disease and tyrosinase activity in Agaricus bisporus infected by Pseudomonas tolaasii upon treatment with endofungal bacteria. Physiological and Molecular Plant Pathology, 2020, 110: 101474.
[67]
方东路. 纳米复合包装材料对金针菇的保鲜作用及其机理[D]. 南京: 南京农业大学, 2017.
FANG D L. Effects of nanocomposite packaging material on Flammulina Velutipes preservation and its possible mechanisms[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[68]
ZHANG H Y, LIAO B, HUANG J, WANG S P, DENG Q, ZHANG H Y, ZENG K F. Mechanism of the enhancement in disease resistance of Citrus fruit induced by Metschnikowia citriensis treated with tryptophan. Postharvest Biology and Technology, 2024, 213: 112933.
[69]
CHEN J, LI Y X, LI F F, YUAN D B. Physiological, metabolome, and transcriptome analysis revealed the effect of ethyl 3-amino-3- thioxopropanoate on the browning of fresh-cut banana during storage. Postharvest Biology and Technology, 2024, 218: 113176.
[70]
CHANG X Y, FENG Y Y, DONG T T, WANG Q G. Inhibitory effect and the involved mechanism of furaneol on enzymatic browning of potatoes. Postharvest Biology and Technology, 2024, 216: 113076.
[71]
SHI J K, XIE W X, LI S N, WANG Y, WANG Q G, LI Q Q. Prohibitin StPHB3 affects the browning of fresh-cut potatoes via influencing antioxidant capacity and polyphenol oxidase activation. Postharvest Biology and Technology, 2024, 207: 112598.
[72]
CHEN Y P, XU Y Q, LI D, LUO Z S. Exogenous azacytidine alleviates peel browning of postharvest bananas (Musa acuminata) showing an important role of DNA methylation. Postharvest Biology and Technology, 2023, 206: 112554.
[73]
WANG L J, BAI Q H, PAN Q X, WU Y F, SHAO T T, GUO Y W, WEI W S, WEN Y T, CHAI W M. Inhibitory mechanism of esculetin on tyrosinase and browning of fresh-cut apple: New perspectives. Postharvest Biology and Technology, 2024, 208: 112645.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!