Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 4943-4953.doi: 10.3864/j.issn.0578-1752.2021.23.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability

NIU HongZhuang1(),LIU Yang1(),LI XiaoPing2,HAN YuXuan1,WANG KeKe1,YANG Yan1,YANG QianHui1,MIN DongHong1()   

  1. 1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi
    2Seed Management Station of Xingping City in Shaanxi Province, Xingping 713100, Shaanxi
  • Received:2021-03-02 Accepted:2021-05-12 Online:2021-12-01 Published:2021-12-06
  • Contact: DongHong MIN E-mail:1310566335@qq.com;573315234@qq.com;mdh2493@126.com

Abstract:

【Objective】Wheat dough is made of starch wrapped around filaments of gluten proteins. The rheological properties of dough have influence on the processing qualities of food. To explore the effect of starch physicochemical properties on the rheological properties of dough can provide a theoretical basis for clarifing the function of starch in dough.【Method】12 wheat varieties or strains were used as experimental materials, and the 12 test materials had three high molecular weight glutenin subunits (HMW-GSs) combinations. The subunits of Xinmai 26, Jimai 44, Xinong 615, and Gaocheng 8901 were 1, 7+8, and 5+10; the subunits of Xinong 221, Xinong 979, Xinong 633, and Xinong 059 were 1, 7+8, and 2+12; the subunits of 15(85)2A, 14(417)0-0-10, Xiaoyan 22, and Zhoumai 18 were 1, 7+9, and 2+12. Starch was extracted from the seeds of the test materials and the morphology of starch grains was observed by scanning electron microscope. The physicochemical properties of starch (including starch grain distribution, amylose content, relative crystallinity, short-range order degree, and thermal characteristics) and dough mixograph factors (including formation time and stability time) were determined and analyzed.【Result】For the starch granules of the 12 materials, the large starch granules were irregular oval, while the small starch granules were irregular oval or polyhedron. The starch grains of Xinmai 26, Jimai 44, Gaocheng 8901, Xinong 221, Xinong 979, and Xinong 059 were closely arranged, while the starch grains of Xinong 615, Xinong 633, 15(85)2A, 14(417)0-0-10, Xiaoyan 22, and Zhoumai 18 were dispersed. Xinong 979, 15(85)2A, Xiaoyan 22, and Zhoumai 18 had larger diameter of A-type starch grains. The higher the content of A-type starch grains, the lower the content of B-type starch grains, and the smaller the ratio of B-type starch grains to A-type starch grains. When the amylose content between two materials was similar, their dough stability time was similar. The X-ray diffraction patterns of the starches of the 12 materials are similar and all belong to A-type crystal structure. The Fourier transform infrared spectrum analysis of starch showed that Xinmai 26 had the highest 1 045/1 022 cm-1 value and the lowest 1 022/995 cm-1value, while the value of 1 022/995 cm-1 in Zhoumai 18 was the highest, but the value of 1 045/1 022 cm-1 was lower. This indicates that a higher 1 045/1 022 cm-1 value of the test material usually corresponds to a lower 1 022/995 cm-1 value. The starch properties of the 12 test materials were different, and the stability time of the dough was also significantly different. The materials Xinmai 26, Jimai 44, Xinong 221, Xinong 979, and Xinong 633 had longer dough stability time, and the dough stability time of Xinmai 26 was much longer than that of other materials.【Conclusion】 Among the 12 test materials, amylose content (r=0.88, P<0.01) and short-range order of starch (r=0.83, P<0.01) were significantly positively correlated with the dough stability time. The A-type starch content (r=0.61, P<0.05), starch relative crystallinity (r = 0.84, P<0.01), and enthalpy of starch gelatinization (r=0.71, P<0.01) were significantly negatively correlated with the dough stability time.

Key words: wheat dough, starch granules, starch structure, starch physiochemical properties, dough stability

Fig. 1

Composition of HMW-GSs of 12 varieties Lane 1: Chinese Spring (CK); Lane 2- Lane 5: Xinmai 26, Jimai 44, Xinong 615, Gaocheng 8901; Lane 6- Lane 9: Xinong 221, Xinong 979, Xinong 633, Xinong 059; Lane 10- Lane 13: 15 (85) 2A, 14 (417) 0-0-10, Xiaoyan 22, Zhoumai 18. HMW-GSs band N: Null subunit; 1: 1 subunit; 2: 2 subunit; 5: 5 subunit; 7: 7 subunit; 8: 8 subunit; 9: 9 subunit; 10: 10 subunit; 12: 12 subunit"

Table 1

Dough processing properties of the 12 varieties"

试验材料
Varieties
形成时间
Dough development time (min)
稳定时间
Dough stability (min)
新麦26 Xinmai 26 7.05±0.17bc 41.80±0.16a
济麦44 Jimai 44 6.55±0.19d 17.66±0.14e
西农615 Xinong 615 6.63±0.21cd 9.23±0.19f
藁城8901 Gaocheng 8901 7.46±0.14ab 8.25±0.12g
西农221 Xinong 221 5.36±0.34e 21.52±0.18b
西农979 Xinong 979 7.30±0.17ab 20.33±0.18c
西农633 Xinong 633 7.53±0.18a 19.55±0.12d
西农059 Xinong 059 6.26±0.27d 7.17±0.16h
15(85)2A 4.63±0.22f 5.96±0.18i
14(417)0-0-10 4.42±0.24f 5.08±0.19j
小偃22 Xiaoyan 22 5.17±0.15e 4.06±0.17k
周麦18 Zhoumai 18 2.61±0.19g 3.14±0.15l

Fig. 2

Images of starch granules isolated from flour of the 12 varieties A: Xinmai 26; B: Jimai 44; C: Xinong 615; D: Gaocheng 8901; E: Xinong 221; F: Xinong 979; G: Xinong 633; H: Xinong 059; I: 15 (85) 2A; J: 14 (417) 0-0-10; K: Xiaoyan 22; L: Zhoumai 18"

Table 2

Amylose content, number distribution of starch granules of starch from 12 varieties"

试验材料
Varieties
A型淀粉粒含量
A-type starch granule (%)
B型淀粉粒含量
B-type starch granule (%)
B/A值
B/A ratio
直链淀粉含量
Amylose content (%)
新麦26 Xinmai 26 54.34±0.59h 45.66±0.59a 0.84 24.57±0.19a
济麦44 Jimai 44 57.85±0.66g 42.15±0.66b 0.73 23.16±0.47b
西农615 Xinong 615 59.99±0.19f 40.01±0.19c 0.67 20.82±0.29d
藁城8901 Gaocheng 8901 61.45±0.78e 38.55±0.78d 0.63 19.81±0.15efg
西农221 Xinong 221 65.85±0.36b 34.15±0.36fg 0.52 22.57±0.37bc
西农979 Xinong 979 64.29±0.28c 35.71±0.28e 0.56 19.86±0.11ef
西农633 Xinong 633 66.42±0.45b 33.58±0.45g 0.51 22.22±0.23c
西农059 Xinong 059 69.77±0.63a 30.23±0.63h 0.43 20.10±0.32e
15(85)2A 62.52±0.34d 37.48±0.34d 0.60 19.18±0.52gh
14(417)0-0-10 66.20±0.47b 34.13±1.01fg 0.52 18.7±0.25h
小偃22 Xiaoyan 22 64.78±0.42c 35.22±0.42ef 0.54 19.22±0.13fgh
周麦18 Zhoumai 18 70.11±0.41a 29.89±0.41h 0.43 18.17±0.41i

Fig. 3

Spectra of X-ray diffraction analysis of the starch granules extracted from the 12 varieties"

Table 3

Structural order of starch external region and relative crystallinity of starch from 12 varieties"

试验材料 Varieties 相对结晶度 Relative crystallinity (%) 短程有序度 1045/1022 cm-1 无序结构/碳水化合物 1022/995 cm-1
新麦26 Xinmai 26 25.78±0.16i 1.11±0.03a 0.77±0.03e
济麦44 Jimai 44 29.26±0.15f 1.04±0.02b 0.82±0.01e
西农615 Xinong 615 31.37±0.16d 0.82±0.02e 0.95±0.02d
藁城8901 Gaocheng 8901 33.31±0.12b 0.86±0.03d 0.95±0.04d
西农221 Xinong 221 27.73±0.09h 0.95±0.01c 0.92±0.02d
西农979 Xinong 979 28.34±0.13g 0.86±0.04d 1.04±0.05c
西农633 Xinong 633 29.92±0.09e 0.86±0.01de 0.97±0.02d
西农059 Xinong 059 32.41±0.15c 0.74±0.01f 1.12±0.02b
15(85)2A 29.46±0.11f 0.85±0.01de 1.04±0.02c
14(417)0-0-10 31.54±0.18d 0.82±0.02de 1.14±0.01b
小偃22 Xiaoyan 22 31.32±0.11d 0.84±0.03de 1.16±0.05ab
周麦18 Zhoumai 18 35.32±0.19a 0.77±0.01f 1.21±0.03a

Table 4

The thermal properties of starch from 12 varieties"

试验材料
Varieties
起始温度
T0 (℃)
峰值温度
Tp (℃)
结束温度
Tc (℃)
糊化焓
ΔHgel (J·g-1)
新麦26 Xinmai 26 53.47±0.95de 60.13±0.21de 66.73±0.99bc 6.90±0.30fg
济麦44 Jimai 44 54.03±0.31bc 60.23±0.68de 67.45±0.46abc 7.30±0.29ef
西农615 Xinong 615 55.60±0.92ab 61.27±0.35cd 67.72±0.35abc 7.40±0.30def
藁城8901 Gaocheng 8901 52.63±0.25de 60.40±0.36de 66.95±0.35abc 7.14±0.17ef
西农221 Xinong 221 56.27±0.76a 61.33±0.55cd 69.02±0.68a 6.40±0.39g
西农979 Xinong 979 53.83±0.60bc 62.96±0.06b 64.47±1.11de 6.94±0.11fg
西农633 Xinong 633 53.73±1.29c 64.83±0.57a 68.62±1.17ab 7.64±0.35cd
西农059 Xinong 059 53.77±0.86c 62.43±0.40bc 68.73±0.62ab 7.75±0.20bcd
15(85)2A 54.27±1.21bc 59.43±1.21e 65.72±2.49cd 7.95±0.51abc
14(417)0-0-10 51.67±0.91e 54.33±1.00g 60.78±0.68f 8.31±0.40ab
小偃22 Xiaoyan 22 52.50±0.36de 56.14±0.10f 63.10±0.82e 8.06±0.18abc
周麦18 Zhoumai 18 53.57±1.40d 55.47±1.07fg 65.75±0.97cd 8.47±0.30a

Fig. 4

Regression analysis between starch physicochemical properties and dough stability of 12 varieties"

[1] 何中虎, 杨金, 徐兆华, 刘爱峰, 赵振东. 小麦品种淀粉特性变异及其与面条品质关系的研究. 中国农业科学, 2003, 36(1):7-12.
HE Z H, YANG J, XU Z H, LIU A F, ZHAO Z D. Variation of starch properties in wheat cultivars and their relationship with dry white Chinese noodle quality. Scientia Agricultura Sinica, 2003, 36(1):7-12. (in Chinese)
[2] 毛沛, 李宗智, 卢少源. 小麦遗传资源HMW麦谷蛋白亚基组成及其与面包烘烤品质关系的研究. 中国农业科学, 1995, 28(增刊):22-27.
MAO P, LI Z Z, LU S Y. Study on the composition of glutenin subunits in wheat genetic resources HMW and its relationship with bread baking quality. Scientia Agricultura Sinica, 1995, 28(Suppl):22-27. (in Chinese)
[3] 付国占, 严美玲, 蔡瑞国, 贾秀领, 田雷, 曹鸿鸣, 王振林. 磷氮配施对小麦籽粒蛋白质组分含量和面团特性的影响. 中国农业科学, 2008, 41(6):1640-1648.
FU G Z, YAN M L, CAI R G, JIA X L, TIAN L, CAO H M, WANG Z L. Effects of application of phosphorus combined with nitrogen fertilizer on contents of grain protein components and dough rheological characteristics in wheat. Scientia Agricultura Sinica, 2008, 41(6):1640-1648. (in Chinese)
[4] 郭兴凤, 张莹莹, 任聪, 石长硕, 孙小红. 小麦蛋白质的组成与面筋网络结构, 面制品品质关系的研究进展. 河南工业大学学报(自然科学版), 2018, 39(186):125-130.
GUO X F, ZHANG Y Y, REN C, SHI C S, SUN X H. Research progress on the relationship between the composition of wheat protein and the network structure of gluten and the quality of flour products. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(186):125-130. (in Chinese)
[5] KAUR A, SHEVKANI K, KATYAL M, SINGH N, AHLAWAT A K, SINGH A M. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. Journal of Food Science and Technol, 2016, 53:2127-2138.
doi: 10.1007/s13197-016-2202-3
[6] SOH H N, SISSONS M J, TUME R, M A. Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chemistry, 2007, 83(5):513-519.
doi: 10.1094/CC-83-0513
[7] PARK S H, CHUNG O K, SEIB P A. Effects of varying weight ratios of large and small wheat starch granules on experimental straight-dough bread. Cereal Chemistry, 2005, 82:166-172.
doi: 10.1094/CC-82-0166
[8] WILSON J D, BECHTEL D B, GWT W, SEIB P A. Bread quality of spelt wheat and its starch. Cereal Chemistry, 2008, 85:629-638.
doi: 10.1094/CCHEM-85-5-0629
[9] ADRIAAN V, AUGER F, FREDERIX S, MOREL M H. Image analysis of dough development: Impact of mixing parameters and wheat cultivar on the gluten phase distribution. Journal of Food Engineering, 2015, 55411:152-160.
[10] LETANG C, PIAU M, VERDIER C. Characterization of wheat flour-water doughs. Part I: Rheometry and microstructure. Journal of Food Engineering, 1999, 41:121-132.
doi: 10.1016/S0260-8774(99)00082-5
[11] WANG P, JIN Z, XU X. Physicochemical alterations of wheat gluten proteins upon dough formation and frozen storage-A review from gluten, glutenin and gliadin perspectives. Trends in Food Science & Technology, 2015, 46:189-198.
[12] LI S, LIU Y, TONG J, YU L, GAO X. The overexpression of high-molecular-weight glutenin subunit Bx7 improves the dough rheological properties by altering secondary and micro-structures of wheat gluten. Food Research International, 2019, 130:108914.
doi: 10.1016/j.foodres.2019.108914
[13] LIAO L, ZHANG F L, LIN W J, LI Z F, YANG J Y, PARK K H, NI L, LIU P. Gluten-starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chemistry, 2019, 283:111-122.
doi: 10.1016/j.foodchem.2019.01.019
[14] LI X, LIU T, SONG L, ZHANG H, LI L, GAO X. Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chemistry, 2016b, 213:728-734.
doi: 10.1016/j.foodchem.2016.07.043
[15] 程西永, 吴少辉, 李海霞, 董中东, 任妍, 詹克慧, 许海霞. 小麦高, 低分子量麦谷蛋白亚基对品质性状的影响. 麦类作物学报, 2014, 34:482-488.
CHENG X Y, WU S H, LI H X, DONG Z D, REN Y, ZHAN K H, XU H X. Effects of HMW and LMW glutenin subunits on wheat quality traits. Journal of Triticeae Crops, 2014, 34:482-488. (in Chinese)
[16] CAO X, TONG J, DING M, WANG K, WANG L, CHENG D, LI H, LIU A, LIU J, ZHAO Z. Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chemistry, 2019, 297:125000.
doi: 10.1016/j.foodchem.2019.125000
[17] GAO X, LIU T, YU J, LI L, FENG Y, LI X. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chemistry, 2016, 197:1184-1190.
doi: 10.1016/j.foodchem.2015.11.085
[18] 金慧, 何中虎, 李根英, 穆培源, 樊哲儒, 夏先春, 张艳. 利用Aroona近等基因系研究高分子量麦谷蛋白亚基对面包加工品质的影响. 中国农业科学, 2013, 46(6):1095-1103.
JIN H, HE Z H, LI G Y, MU P Y, FAN Z R, XIA X C, ZHANG Y. Effects of high molecular weight glutenin subunits on wheat quality by Aroona and its near-isogenic lines. Scientia Agricultura Sinica, 2013, 46(6):1095-1103. (in Chinese)
[19] SINGH S, SINGH N. Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocolloids, 2013, 33:342-348.
doi: 10.1016/j.foodhyd.2013.04.007
[20] YEGIN S, ALTINEL B, TULUK K. A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: Effects on dough rheology and bread quality. Food Hydrocolloids, 2018, 81:389-397.
doi: 10.1016/j.foodhyd.2018.03.012
[21] YU L W, GUO L, LIU Y C. Novel parameters characterizing size distribution of A and B starch granules in the gluten network: Effects on dough stability in bread wheat. Carbohydrate Polymers, 2021, 257:117623.
doi: 10.1016/j.carbpol.2021.117623
[22] ZI Y, SHEN H, DAI S, MA X, JU W, WANG C, GUO J, LIU A, CHENG D, LI H. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocolloids, 2019, 93:78-86.
doi: 10.1016/j.foodhyd.2019.02.014
[23] EDWARDS N M, DEXTER J E, SCANLON M G. Starch participation in durum dough linear viscoelastic properties. Cereal Chemistry, 2002, 79:850-856.
doi: 10.1094/CCHEM.2002.79.6.850
[24] SHEVKANI K, SINGH N, BAJAJ R KAUR, A. Wheat starch production, structure, functionality and applications-A review. International Journal of Food Science and Technology, 2017, 52:38-58.
doi: 10.1111/ijfs.2017.52.issue-1
[25] TANG H, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydrate Research, 2001, 330:241-248.
doi: 10.1016/S0008-6215(00)00292-5
[26] LLOYD J R. The A to B of starch granule formation in wheat endosperm. Journal of Experimental Botany, 2020, 71:1-3.
doi: 10.1093/jxb/erz414
[27] LIU X, CAI R, LI Y, ZHANG M, YANG M, ZHANG Y. Starch component characteristics and physicochemical properties in wheat grains with different amylose contents in relation to low light after anthesis. Starch-Starke, 2017, 1:1700050.
[28] 戴忠民, 王振林, 张敏, 李文阳, 闫素辉, 蔡瑞国, 尹燕枰. 不同品质类型小麦籽粒淀粉粒度的分布特征. 作物学报, 2008, 34(3):465-470.
DAI Z M, WANG Z L, ZHANG M, LI W Y, YAN S H, CAI R G, YIN Y P. Starch granule size distribution in grains of strong and weak gluten wheat cultivars. Acta Agronomica Sinica, 2008, 34(3):465-470. (in Chinese)
[29] ZHANG Y, ZHANG G Z. Starch content and physicochemical properties of green wheat starch. International Journal of Food Properties, 2019, 22(1):1463-1474.
doi: 10.1080/10942912.2019.1651739
[30] LI W, GAO J, WU G, ZHENG J, OUYANG S, LUO Q, ZHANG G. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids, 2016, 60:364-373.
doi: 10.1016/j.foodhyd.2016.04.011
[31] CHIOTELLI E, MESTE M L. Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chemistry, 2007, 79(2):268-293.
[32] 张惠琴, 臧清露, 李超, 刘佳闻, 张洁, 李继洋, 李玲玉, 盛建国, 孔德昭, 李雅琪. 小麦粉主要成分对面条品质的影响研究. 现代面粉工业, 2021, 35(1):16-19.
ZHANG H Q, ZANG Q L, LI C, LIU J W, ZHANG J, LI J Y, LI L Y, SHENG J G, KONG D Z, LI Y Q. Study on the effect of main components of wheat flour on noodle quality. Modern Flour Milling Industry, 2021, 35(1):16-19. (in Chinese)
[33] TAO H, WANG P, WU F F. Particle size distribution of wheat starch granules in relation to baking properties of frozen dough. Carbohydrate Polymers, 2016, 137:147-153.
doi: 10.1016/j.carbpol.2015.10.063
[34] 宋健民, 刘爱峰, 李豪圣, 戴双, 刘建军, 赵振东, 刘广田. 小麦籽粒淀粉理化特性与面条品质关系研究. 中国农业科学, 2008, 41(1):272-279.
SONG J M, LI A F, LI H S, DAI S, LIU J J, ZHAO Z D, LIU G T. Relationship between starch physiochemical properties of wheat grain and noodle quality. Scientia Agricultura Sinica, 2008, 41(1):272-279. (in Chinese)
[35] ERIC B. Understanding starch structure: Recent progress. Agronomy, 2017, 7:56-65.
doi: 10.3390/agronomy7030056
[36] MCCANN T H, HOMER S H, ISETH S K, LI D, LUNDIN L. High amylose wheat starch increases the resistance to deformation of wheat flour dough. Journal of Cereal Science, 2017, 79:440-448.
doi: 10.1016/j.jcs.2017.12.001
[37] PARK C S, BAIK B K. Significance of amylose content of wheat starch on processing and textural properties of instant noodles. Cereal Chemistry, 2004, 81:521-526.
doi: 10.1094/CCHEM.2004.81.4.521
[38] SASAKI T. Effect of wheat starch characteristics on the gelatinization, retrogradation, and gelation properties. Japan Agricultural Research Quarterly, 2005, 39(4):253-260.
doi: 10.6090/jarq.39.253
[39] GAO X, LIU T, DING M, WANG J, LI C, WANG Z, LI X. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L.). Food Chemistry, 2017, 240:626-633.
doi: 10.1016/j.foodchem.2017.07.165
[40] SONG L, ZHAO L, LIU Z, LI L, LI X. Effects of exogenous starch on the structural-thermal properties of gluten in wheat with HMW-GS variations at Glu-D1 locus. Food Research International, 2019, 130:108950.
doi: 10.1016/j.foodres.2019.108950
[41] ZHU D, ZHANG H, GUO B, XU K, DAI Q, WEI C, ZHOU G, HUO Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocolloids, 2017, 63:356-363.
doi: 10.1016/j.foodhyd.2016.09.013
[42] SEVENOU O, HILL S E, FARHAT I A, MITCHELL J R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 2002, 31:79-85.
doi: 10.1016/S0141-8130(02)00067-3
[43] WANG S, LI C, COPELAND L, NIU Q, WANG S. Starch retrogradation: A comprehensive review. Food Science and Food Safety, 2015, 14:1541-4337.
[44] TESTER R F, KARKALAS J, XIN Q. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004, 39:151-165.
doi: 10.1016/j.jcs.2003.12.001
[45] WATERSCHOOT J, GOMAND S V, FIERENS E, DELCOUR J A. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Starke, 2015, 67:14-29.
doi: 10.1002/star.v67.1-2
[46] ZHANG D, MU T, SUN H. Effects of starch from five different botanical sources on the rheological and structural properties of starch-gluten model doughs. Food Research International, 2018, 103:156-162.
doi: 10.1016/j.foodres.2017.10.023
[47] YURYEV V P, KRIVANDIN A V, KISELEVA V I, WASSERMAN L A, GENKINA N K, FORNAL J, BLASZCZAK W, SCHIRALDI A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research, 2004, 339:2683-2691.
doi: 10.1016/j.carres.2004.09.005
[48] SINGH S, SINGH N, ISONO N, NODA T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agricultural & Food Chemistry, 2010, 58:1180-1188.
[49] FLIPSE E, KEETELS C, JACOBSEN E, VISSER R. The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico-chemical properties of starch. Theoretical and Applied Genetics, 1996, 92:121-127.
doi: 10.1007/BF00222961
[1] SONG XiaoJun, ZHANG Min, WU XuePing, ZHAO Cheng, SHI Jian, ZHANG YuChun, LIU XiWei, CAI RuiGuo. Effects of Drought Stress on Wheat Endosperm Starch Structure and Physicochemical Properties of Different Varieties [J]. Scientia Agricultura Sinica, 2017, 50(2): 260-271.
[2] YIN Yong-an,QI Jun-cang,LI Wei-hua,CAO Lian-pu,WANG Zi-bu
. Physico-Chemical Characteristics of A, B Type Starch Granule in Wheat Endosperm
[J]. Scientia Agricultura Sinica, 2010, 43(11): 2372-2379 .
[3] ,,,,. Variation and Stability Analysis of Wheat Dough Stability Time [J]. Scientia Agricultura Sinica, 2005, 38(11): 2165-2172 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!