Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (19): 4121-4128.doi: 10.3864/j.issn.0578-1752.2011.19.024

• RESEARCH NOTES • Previous Articles    

Influence of Nitrate Nitrogen on Salt Tolerance and Osmoticum of Chinese Iris

 ZHANG  Biao, LI  Pin-Fang   

  1. 1.中国农业大学资源与环境学院/植物-土壤相互作用教育部重点实验室
  • Received:2011-01-17 Online:2011-10-01 Published:2011-03-29

Abstract: 【Objective】The objective of this study was to investigate the salt tolerance of Chinese Iris (Iris lactea Pall. var. chinensis (Fisch.) Koidz.) and the osmoticum in leaves at different levels of exogenous nitrate, to provide a scientific basis for cultivation and management of Iris lactea. 【Method】 Seedlings in sand culture experiment were treated with nine cross combinations of different NaCl concentrations at 0.1, 140, and 210 mmol?L-1, and three nitrate nitrogen levels at 0.25, 4 and 8 mmol?L-1, respectively. After 35 d of treatment, biomass of leaf and root, uptake of mineral elements and the main osmoticum in leaves were determined.【Result】NO3- at 8 mmol?L-1 caused a much higher increase in leaf biomass than 4 mmol?L-1 nitrate at 140 mmol?L-1 NaCl treatment. The exogenous nitrate (4 and 8 mmol?L-1) caused a 30% increase in leaf biomass at 210 mmol?L-1 NaCl, compared to the values at 0.1 mmol?L-1. No differences in leaf biomass were observed between two nitrate concentrations (P<0.05). Exogenous nitrate resulted in a decrease in root/shoot ratio and leaf membrane permeability but an increase in total N of leaf and root under NaCl stress, while it had no significant effect on mineral element contents (K+、Na+、Ca2+、Mg2+). Contents of inorganic ions in leaves under interactions of nitrate and NaCl was Cl->K+>Na+>NO3-. Increase in concentrations of exogenous nitrate caused a decrease in Cl-, Na+ and K+ contents but an increase in proline and NO3- contents.【Conclusion】The growth under NaCl stress was improved by exogenous medium concentration of nitrate, and the mechanism may depend on improvement of nutrient uptake under NaCl stress, increase in proline and NO3- and decrease in root/shoot ratio, Cl-, Na+ and K+ contents.

Key words:

[1]赵可夫, 李法曾. 中国盐生植物. 北京: 科学出版社, 1999: 358-360.

Zhao K F, Li F Z. Halophyte in China. Beijing: Science Press, 1999: 358-360. (in Chinese)

[2]刘德福, 陈世璜, 陈敬文, 敖特根, 占布拉, 杨尚明. 马蔺的繁殖特性及生态地理分布的研究. 内蒙古农牧学院学报, 1998, 19(1): 1-6.

Liu D F, Chen S H, Chen J W, Ao T G, Zhan B L, Yang S M. Reproductive characteristics, ecological and geographical distribution of Iris lactea var. Chinensis. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1998, 19(1): 1-6. (in Chinese)

[3]樊润威, 崔志祥, 张三粉, 李守明. 盐碱荒地旱植马蔺的研究. 内蒙古农业科技, 1991(5): 17-18.

Fan R W, Cui Z X, Zhang S F, Li S M. Study on Iris Pall Var. Chinesis in salt-alkali wasteland. Agricultural Science and Technology of Inner Mongolia,1991(5): 17-18. (in Chinese)

[4]Naidoo G, Naidoo Y. Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetlands Ecology and Management, 2001, 9(6): 491-497.

[5]Ding X D, Tian C Y, Zhang S R, Song J, Zhang F S, Mi G H, Feng G. Effects of NO3-N on the growth and salinity tolerance of Tamarix laxa willd. Plant and Soil, 2010, 331: 57-67.

[6]Yuan J F, Feng G, Ma H Y, Tian C Y. E?ect of nitrate on root development and nitrogen uptake of Suaeda physophora under NaCl salinity. Pedosphere, 2010, 20(4): 536-544.

[7]Song J, Ding X D, Feng G, Zhang F S. Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytologist, 2006, 171(2): 357-366.

[8]夏 阳, 林 杉, 张福所, 李 杰, 胡恒觉, 梁慧敏, 李庆国. 淋洗对盐胁迫下大豆生长和矿质营养基因型差异影响的研究. 土壤学报, 2003, 40(1): 155-159.

Xia Y, Lin B, Zhang F S, Li J, Hu H J, Liang H M, Li Q G. Effect of foliar leaching on growth and mineral nutrient contents of soybean under NaCl stress. Acta Pedologica Sinica, 2003, 40(1): 155-159. (in Chinese)

[9]Ochiai K, Matoh T. Mechanism of salt tolerance in the grass species, Anneurolepidium chinense: I. Growth response to salinity and osmotic adjustment. Soil Science and Plant Nutrition, 2001, 47(3): 579-585.

[10]李品芳, 白文波, 杨志成. NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响. 中国农业科学, 2005, 38(7): 1458-1465.

Li P F, Bai W B, Yang Z C. Effects of NaCl stress on ions absorption and transportation and plant growth of Tall fescue. Scientia Agricultura Sinica, 2005, 38(7): 1458-1465. (in Chinese)

[11]Bai W B, Li P F, Li B G, Fujiyama H, Fan F C. Some physiological responses of Chinese iris to salt stress. Pedosphere, 2008, 18(4): 454-463.

[12]Maathuis F J M. The role of monovalent cation transporters in plant responses to salinity. Journal of Experimental Botany, 2006, 57(5): 1137-1147.

[13]Gorham J, Bristol A, Young E M, Wyn Jones R G. The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theoretical and Applied Genetics, 1991, 82(6): 729-736.

[14]Liu X J, Yang Y M, Li W Q, Li C Z, Duan D Y, Tadano T. Interactive effects of sodium chloride and nitrogen on the growth and ion accumulation of a halophyte. Communications in Soil Science and Plant Analysis, 2004, 35(15-16): 2111-2123.

[15]Kolb A, Alpert P. Effects of nitrogen and salinity on growth and competition between a native grass and an invasive congener. Biological Invasions, 2003, 5(3): 229-238.

[16]Barhoumi Z, Atia A, Rabhi M, Djebali W, Abdelly C, Smaoui A. Nitrogen and NaCl salinity effects on the growth and nutrient acquisition of the grasses Aeluropus littoralis, Catapodium rigidum, and Brachypodium distachyum. Journal of Plant Nutrition and Soil Science, 2010, 173(1): 149-157.

[17]宋 杰. 内陆干旱区几种盐生植物种子和幼苗抗盐性的研究[D]. 北京: 中国农业大学, 2005: 62-63.

Song J. Studies on salt-resistance of seed and seedlings in several halophytes in inland arid region[D]. Beijing: China Agriculture University, 2005: 62-63. (in Chinese)

[18]赵可夫. 植物抗盐生理. 北京: 中国科学技术出版社, 1993: 149-154.

Zhao K F. Plant Salt Resistance Physiology. Beijing: Chinese Science and Technology Press, 1993: 149-154. (in Chinese)

[19]Inada M, Ueda A, Shi W, Takabe T. A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na+ and K+ accumulation under salt stress. Planta, 2005, 220(3): 395-402.

[20]Flowers T J, Colmer T D. Salinity tolerance in halophytes. New Phytologist, 2008, 179(4): 945-963.

[21]Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells. Biochimica et Biophysica Acta Biomembranes, 2000, 1465(1-2): 140-151.

[22]Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

[23]Munns R. Comparative physiology of salt and water stress. Plant, Cell and Environment, 2002, 25(2): 239-250.

[24]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 1980, 31: 149-190.

[25]Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!